الصواريخ الصاروخ نوع من المحركات التي تنتج طاقة أكثر من مثيلاتها ذات الحجم نفسه أو أي محرك آخر. يستطيع الصاروخ أن ينتج طاقة تقدر بأكثر من 3,000 ضعف طاقة محرك السيارة. يمكن استعمال كلمة صاروخ كذلك لوصف المركبة التي تساق بوساطة محرك الصاروخ.
تُصنع الصواريخ من عدة أحجام، وتستعمل بعضها لقذف الألعاب النارية إلى أعلى، ويبلغ طولها حوالي 60سم. وتحمل الصواريخ التي طولها من 15 إلى 30 م القذائف الضخمة لضرب أهداف الأعداء البعيدة، وعمومًا لابد من وجود الصواريخ الكبيرة والقوية لحمل الأقمار الصناعية إلى مدار حول الأرض. ويبلغ ارتفاع الصاروخ ساتورن-ف الذي حمل رواد الفضاء إلى القمر أكثر من 110م.
يستطيع الصاروخ أن ينتج طاقة هائلة لكنه يحرق الوقود بسرعة. لهذا السبب، يجب أن يتوفر للصاروخ كمية كبيرة من الوقود ليعمل حتى ولو فترة قصيرة. فقد أحرق ساتورن ـ ف مثلاً أكثر من 2,120,000 لتر من الوقود خلال الـ 2,75 دقيقة الأولى لطيرانه. وتصبح الصواريخ ساخنة جدًا بحرقها للوقود. وتصل حرارة بعض محركاتها إلى 3,300°م، أي ضعف درجة انصهار الصلب تقريبًا.
تطورت تقنية الصواريخ أساسًا بعد الحرب العالمية الثانية (1939-1945م). وهي تقنية غاية في التعقيد؛ لأن محرك الصاروخ يجب أن يصمد، ليس فقط لدرجات الحرارة العالية، ولكن للضغط العالي الفائق والقوى الميكانيكية القوية أيضًا، وأخيرًا ينبغي أن يظل خفيفًا لتحقيق مهامه. ويستعمل الناس الصواريخ أساسًا للبحث العلمي ورحلات الفضاء والحرب.
استعملت الصواريخ في الحروب طوال مئات السنين. ففي القرن الثالث عشر الميلادي كان الجنود الصينيون يطلقونها على الجيوش المهاجمة. واستعملت القوات البريطانية الصواريخ للهجوم على فورت مكهنري في ماريلاند الأمريكية، خلال حرب عام 1812(1812- 1814م). وصف فرانسيس سكوت كي، بعد مشاهدته للحرب، في كلماته التي صاغها في النشيد القومي للولايات المتحدة، الوهج الأحمر للصواريخ بأنها شعار النجم اللامع. وخلال الحرب العالمية الأولى (1914ـ 1918م)، استعمل الفرنسيون الصواريخ لإسقاط طائرات العدو. وهجمت ألمانيا على بريطانيا بالصواريخ خلال الحرب العالمية الثانية. وتستطيع الصواريخ اليوم أن تحطم الأقمار الصناعية في مدارها حول الأرض، وكذلك الطائرات النفاثة والقذائف التي تطير أسرع من الصوت.
يستعمل العلماء الصواريخ للاكتشافات والبحث في المجال الجوي والفضاء. وتحمل الصواريخ أجهزة علمية دقيقة في السماء لجمع المعلومات عن الهواء المحيط بالأرض. ومنذ عام 1957م، أطلقت الصواريخ مئات الأقمار الصناعية في مداراتها حول الأرض. وهذه الأقمار الصناعية تؤدي عدة أغراض؛ منها أنها تكون بمثابة وسيلة اتصالات، كما تقوم بجمع معلومات عن جو الأرض للدراسة العلمية. تحمل الصواريخ أجهزة إلى الفضاء لاستكشاف القمر والكواكب وحتى الفضاء الذي بين الكواكب.
توفر الصواريخ الطاقة اللازمة لرحلات الإنسان إلى الفضاء التي بدأت عام 1961م. وفي 1969م حملت الصواريخ روّاد الفضاء في أول هبوط على القمر. وفي عام 1981م، حمل الصاروخ أول مكوك فضاء إلى مدار حول الأرض. وفي المستقبل يمكن أن تحمل الصواريخ الإنسان إلى المريخ والكواكب الأخرى.
كيف يعمل الصاروخكيف يعمل الصاروخ متعدد المراحل. يحمل الصاروخ ذو المرحلتين دافعًا ومحركًا صاروخيًا واحدًا أو أكثر في كل مرحلة. المرحلة الأولى تطلق الصاروخ، وبعد حرق الدافع تسقط بعيدًا عن الصاروخ. المرحلة الثانية تبدأ وتحمل الرؤوس المحملة إلى المدار الأرضي أو حتى أبعد من ذلك إلى الفضاء.
قانون الحركة الأساسي الذي اكتشفه العالم البريطاني السير إسحق نيوتن في القرن السابع عشر الميلادي يصف كيف يعمل الصاروخ. هذا القانون ينص على أن لكل فعل رد فعل مساوٍ له في المقدار ومضادٍّ له في الاتجاه. انظر: الحركة. يشرح قانون نيوتن كيف يؤدي تدفق الهواء من بالون صغير إلى دفع البالون للطيران. ويعمل أقوى الصواريخ بنفس الطريقة.
يحرق الصاروخ وقودًا خاصًا في غرفة احتراق فينتج غاز يتمدد بسرعة. ويضغط هذا الغاز داخل الصاروخ بالتساوي في كل الاتجاهات. وضغط هذا الغاز على أحد جوانب الصاروخ يساوي ضغط الغاز على الجانب المقابل. ويخرج الغاز من مؤخرة الصاروخ من خلال فوهة. ولا يعادل هذا الغاز المعدم ضغط الغاز على مقدمة الصاروخ. وهذا الضغط غير المتساوي هو الذي يدفع الصاروخ للأمام.
وسريان الغاز خلال فوهة الصاروخ هو الفعل الذي وُصِفَ في قانون نيوتن. ويكون رد الفعل هو الدفع المستمر قوة الدفع للصاروخ بعيدًا عن خروج الغاز المعدم.
الوقود الدافع للصاروخ. تحرق الصواريخ مجموعة من المواد الكيميائية تُسمى الوقود الدافع يتكوَّن من: 1-وقود؛ مثل البنزين والبرافين أو الهيدروجين السائل 2- مادة مؤكسدة؛ مثل رباعي أكسيد النيتروجين، أو الأكسجين السائل. والمادة المؤكسدة تمد الوقود بالأكسجين اللازم للاحتراق. ويُمَكِّن هذا الأكسجين الصاروخ من العمل في الفضاء الخارجي حيث لا يوجد هواء.
كذلك تعمل المحركات النفاثة بوساطة الفعل ورد الفعل. لكن الوقود النفاث لا يحتوي على مادة مؤكسدة. ويسحب المحرك النفاث الأكسجين من الهواء. ولهذا السبب لا يعمل خارج المجال
يحرق الصاروخ الوقود الدافع بمعدل سريع، وأغلب الصواريخ تحمل كمية تبقى عدة دقائق فقط. لكن الصاروخ ينتج هذه القوة الساحبة التي تقدر على قذف مركبات ثقيلة بعيدًا في الفضاء.
يحرق الصاروخ أغلب الوقود الدافع خلال الدقائق القليلة الأولى للطيران. وخلال هذا الوقت تقل سرعة الصاروخ بالاحتكاك بالهواء، والجاذبية، ووزن الوقود. يعوق احتكاك الهواء الصاروخ طوال مساره في الغلاف الجوي. وعندما ينطلق الصاروخ إلى أعلى، فإن الهواء يصبح أقل ويقل الاحتكاك في الفضاء، ولا يوجد احتكاك يؤثر على الصاروخ. وتشد الجاذبية الأرضية الصاروخ إلى الأرض، لكن هذا الجذب يقل كلما ارتفع الصاروخ بعيدًا عن الأرض. وعندما يحرق الصاروخ الوقود فإن وزنه يقل
الصاروخ متعدد المراحل.يتكون الصاروخ من عدة مقاطع تسمى مراحل، وكل مرحلة لها محرك صاروخي ووقود دافع. طوَّر المهندسون الصاروخ متعدد المراحل من أجل رحلات طويلة خلال الغلاف الجوي وإلى الفضاء. فهم يحتاجون إلى صواريخ تستطيع أن تصل إلى سرعات أكبر من سرعات الصواريخ ذات المرحلة الواحدة. ويمكن للصاروخ متعدد المراحل أن يصل إلى سرعات أعلى نتيجة نقصان وزنه بإسقاط مراحل تم استعمال وقودها. وتبلغ سرعة الصاروخ ذي الثلاث مراحل تقريبًا ثلاثة أضعاف سرعة الصاروخ ذي المرحلة الواحدة.
تسمى المرحلة الأولى المعزِّز، وتقذف الصاروخ بعد حرق وقود المرحلة الأولى، وتُسقِط المركبة هذا المقطع وتستعمل المرحلة الثانية. ويظل الصاروخ يستعمل مرحلة بعد الأخرى. وأغلب صواريخ الفضاء ذات مرحلتين أو ثلاث مراحل.
إطلاق الصاروخ.تحتاج صواريخ الفضاء إلى قواعد إطلاق خاصة مجهزة. وأغلب فاعلية القذف تكون حول مركز قاعدة القذف التي ينطلق الصاروخ منها. ويحتوي مكان القذف على 1- مبنى الهيكل الذي يكمل منه المهندسون الخطوات النهائية في بناء الصاروخ 2- مبنى الخدمة الذي يتأكد فيه العمال من سلامة الصاروخ قبل إطلاقه 3- مركز التّحكُّم، حيث يوجِّه العلماء إطلاق وطيران الصاروخ. وتقوم محطات الرصد التي تقع في أماكن مختلفة حول العالم بتسجيل مسار رحلة الصاروخ.
يجهز العلماء والمهندسون الصاروخ للإطلاق بطريقة الخطوة خطوة التي تسمَّى العدّ التنازلي، فيرسمون كل خطوة على فترة معينة خلال العد التنازلي، ويتم إطلاق الصاروخ عندما يصل العدّ التنازلي إلى الصفر. ويمكن أن تتسبّب الأجواء غير المرغوب فيها أو أي صعوبة أخرى في إيقاف الإطلاق الذي يوقف مؤقتًا العد التنازلي.
كيف تستعمل الصواريختستعمل الدول الصواريخ أساسًا لتوفير أدوات نقل تنطلق بسرعات عالية خلال الغلاف الجوي والفضاء. وتُعَدُّ الصواريخ ذات قيمة عالية: 1- للاستعمالات العسكرية 2- لأبحاث الغلاف الجوي 3- لإطلاق مجسات الاكتشاف والأقمار الصناعية 4- للسفر عبر الفضاء.
صاروخ حربي يُسمى صاروخ تو، يطلق بطاقم مكون من اثنين. ويمكن إطلاقه من الأرض أو من مركبة.
الاستعمال العسكري. يتفاوت استخدام الجيوش للصواريخ من صواريخ حروب الميدان الصغيرة إلى القذائف الموجهة العملاقة التي تطير عبر المحيط.
البازوكا. صاروخ صغير مقذوف يحمله الجنود، وهو مضاد للمركبات المصفحة. لدى البازوكا قوة اختراق مثل دبابة صغيرة. انظر: البازوكا. وتستعمل الجيوش صواريخ أكبر لتفجير القنابل بعيدًا خلف خطوط الأعداء، وكذلك لإسقاط طائرات العدو. وتحمل الطائرات المقاتلة صواريخ موجهة للهجوم على الطائرات الأخرى والأهداف الأرضية. وتستعمل السفن البحرية الصواريخ الموجهة للهجوم على السفن الأخرى، والأهداف الأرضية والطائرات.
وأحد أهم الاستعمالات الحربية للصواريخ هو إطلاق نوع من القذائف الموجهة بعيدة المدى، تسمى القذائف البالستية العابرة للقارات. وهذه القذائف تستطيع الانطلاق لمدى أكبر من 8,000 كم لتفجير هدف للعدو بالمتفجرات النووية. وهناك مجموعة من الصواريخ القوية تحمل القذيفة عابرة القارات وتسيرها خلال الأجزاء الأولى من رحلتها، ثم تأخذ القذائف باقي طريقها إلى الهدف
أبحاث الغلاف الجوي.يستعمل العلماء صواريخ لاكتشاف الغلاف الجوي المحيط بالأرض، وتحمل الصواريخ الصوتية التي تسمى أيضًا صواريخ الأرصاد الجوية أجهزة مثل: مقياس الضغط الجوي، وآلات التصوير والترمومترات إلى الغلاف الجوي. وتجمع هذه الأجهزة المعلومات عن الغلاف الجوي، وترسلها بالراديو لأجهزة الاستقبال الأرضية. تسمّى هذه الطريقة في جمع المعلومات وإرسالها لمسافات بعيدة بالراديو قياس البعد توفر الصواريخ الطاقة اللازمة لطائرات الأبحاث العلمية. ويستعمل المهندسون هذه الطائرات في تطوير سفن الفضاء. ويتعلم المهندسون من خلال دراسة رحلات هذه الطائرات كالصاروخ الموجّه إكس -15، كيفية التحكم في المركبة للطيران أسرع من الصوت عدة مرات.
إطلاق المجسات والأقمار الصناعية.تُسمَّى الصواريخ التي تحمل أجهزة أبحاث في رحلات طويلة لاكتشاف المجموعة الشمسية المجسات. وتجمع المجسات القمرية هذه المعلومات عن القمر. ويمكنها الطيران إلى أبعد من القمر، والدوران حوله أو الهبوط على سطحه. وتأخذ المجسات بين الكوكبية رحلة ذات اتجاه واحد إلى الفضاء من خلال الكواكب. وتجمع المجسات الكوكبية المعلومات عن الكواكب. ويحلِّق المجس الكوكبي في مدار حول الشمس مع الكوكب المكتشف. وقد اكتشف أول مجس كوكبيّ كوكبيْ المريخ، والزهرة. كما اكتشفت المجسات أيضًا كلاً من المشتري، وزحل، ونبتون.
تحمل الصواريخ الأقمار الصناعية في مدارات حول الأرض. وتجمع بعض هذه الأقمار المعلومات للبحث العلمي. وينقل بعضها الآخر المحادثات الهاتفية أو البث الإذاعي والتلفازي عبر المحيطات
إطلاق المجسات والأقمار الصناعية. تُسمَّى الصواريخ التي تحمل أجهزة أبحاث في رحلات طويلة لاكتشاف المجموعة الشمسية المجسات. وتجمع المجسات القمرية هذه المعلومات عن القمر. ويمكنها الطيران إلى أبعد من القمر، والدوران حوله أو الهبوط على سطحه. وتأخذ المجسات بين الكوكبية رحلة ذات اتجاه واحد إلى الفضاء من خلال الكواكب. وتجمع المجسات الكوكبية المعلومات عن الكواكب. ويحلِّق المجس الكوكبي في مدار حول الشمس مع الكوكب المكتشف. وقد اكتشف أول مجس كوكبيّ كوكبيْ المريخ، والزهرة. كما اكتشفت المجسات أيضًا كلاً من المشتري، وزحل، ونبتون.
وتستخدم الجيوش الأقمار الصناعية للاتصالات والحماية ضد الهجوم الصاروخي المفاجئ، كذلك يستخدمون الأقمار الصناعية لتصوير قواعد صواريخ الأعداء.
تُسمّى الصواريخ التي تحمل المجسات والأقمار الصناعية صواريخ حاملة أو عربات الإطلاق، وأغلب هذه الأنواع تكون ذات مرحلتين أو ثلاث أو أربع مراحل. وهذه المراحل تضع القمر الصناعي على ارتفاعه المناسب، وتعطيه سرعة كافية تصل إلى 29,000كم/ساعة ليظل في المدار. ويجب أن تكون سرعة المجسات بين الكوكبية حوالي 40,200كم/ساعة للتخلص من الجاذبية الأرضية والاستمرار في رحلتها.
السفر عبر الفضاء. توفر الصواريخ الطاقة لمركبة الفضاء التي تدور حول الأرض وتطير إلى القمر والكواكب. وهذه الصواريخ، مثل تلك المستعملة في قذف المجسّات والأقمار الصناعية، تسمى الصواريخ الحاملة أو عربات الإطلاق.
كانت الصواريخ الحربية أو الصواريخ الصوتية أولى السفن الفضائية التي تم إطلاقها، والتي حوَّرها المهندسون قليلاً لحمل سفن الفضاء؛ فقد أضافوا مثلاً مراحل إلى بعض هذه الصواريخ لزيادة طاقتها. وأحيانًا يلجأ المهندسون إلى صواريخ أصغر كمرحلة أولى لقذف مركبة فضاء. وتوفّر هذه الأداة الإضافية قوة دفع إضافية لقذف سفينة فضاء أثقل.
صاروخ سوفييتي في منصته قبل انطلاق رحلة الفضاء سويوز 6. وعندما تُرفع الأبراج على جانبي المنصّة،يستطيع الفنيون العمل في كل جزء من الصاروخ.
كان الصاروخ ساتورن ـ ف الذي حمل أول رائد فضاء أمريكيًا إلى القمر، أقوى مركبة إطلاق أمريكية. وكان يزن أكثر من 2,7 مليون كجم قبل الإطلاق وكان طوله 111 م. وكان من الممكن أن يحمل سفينة فضاء تزن أكثر من 45,000 كجم للقمر. وقد استعمل ساتورن ـ ف 11 محركًا صاروخيًا للدفع في ثلاث مراحل.
يستطيع مكوك الفضاء القابل للاستخدام مرات عديدة أن يحلِّق في الفضاء ويعود إلى الأرض ليقوم برحلات أخرى. ويمكن لمثل هذا المكوك أن يحمل آدميين ومستلزمات إلى ومن محطات فضائية قد تدور حول الأرض. كذلك سوف توفر المراكب الصاروخية الموجهة الأصغر التي تسمى سفن الفضاء التنقل لمسافات قصيرة يومًا ما، مثل التنقل من مركبة مكوك إلى محطة فضاء، أو من قمر صناعي إلى آخر. هذه المركبات سوف توفر القوة للمجسات الفضائية التي تطلق إلى الكواكب من مدار الأرض
استعمالات أخرى. استعملت الصواريخ طوال عدة سنوات كإشارات استغاثة من السفن والطائرات وكذلك من الأرض. كذلك تطلق الصواريخ خطوط الإنقاذ للسفن في المحيطات. كما تقوم صواريخ صغيرة تسمى جاتو بمساعدة الطائرات ثقيلة الحمولة على الإقلاع. وقد استعملت الصواريخ لفترة طويلة في الألعاب النارية.ويستعمل العلماء الصواريخ لرش السحب بالمواد الكيميائية للتحكم في الطقس
أنواع الصواريخ:هناك أربعة أنواع رئيسية من الصواريخ:
1- صواريخ الوقود الدافع الصلب
2- صواريخ الوقود الدافع السائل
3- الصواريخ الكهربائية
4- الصواريخ النووية.
صاروخ الوقود الدافع الصلب يحرق مادة صلبة تسمى الحبوب. يصمم المهندسون أغلب الحبوب بلب أجوف. ويحترق الدافع من اللب إلى الخارج. ويحجب الدافع غير المشتعل غلاف المحرك من حرارة الاحتراق.
صواريخ الوقود الدافع الصلب. تحرق مادة بلاستيكية أو مطاطية تسمى الحبوب. وتتكون الحبوب من الوقود والمؤكسد في الحالة الصلبة. على خلاف بعض أنواع الوقود السائل، فإن الوقود والمؤكسد للمادة الصلبة لا يشتعلان إذا تلامسا مع بعضهما. ويجب إشعال الوقود بإحدى طريقتين: يمكن إشعاله بحرق شحنة صغيرة من المسحوق الأسود وهو خليط من نترات البوتاسيوم، والفحم النباتي والكبريت. كذلك يمكن إشعال الوقود الصلب بالتفاعل الكيميائي لمركب كلور سائل يرش على الحبوب.
تتراوح درجة الحرارة في غرفة الاحتراق للوقود الصلب للصاروخ بين 1,600° و 3,300°م. يستعمل المهندسون في أغلب هذه الصواريخ الفولاذ القوي جدًا أو التيتانيوم لبناء حوائط الغرفة حتى تقاوم الضغط الذي ينشأ عن درجات الحرارة العليا. كذلك يستعملون الألياف الزجاجية أو مواد بلاستيكية خاصة.
يحترق الوقود الصلب أسرع من الوقود السائل، لكنه ينتج قوة دفع أقل من التي تنتج من احتراق نفس الكمية من وقود سائل في نفس الوقت. يظل الوقود الصلب فعالاً لفترات طويلة من التخزين ولا يمثل خطورة تذكر حتى عند الإشعال. ولا يحتاج الوقود الصلب إلى أجهزة للضخ والمزج اللازمة للوقود السائل، لكنه من ناحية أخرى، صعب إيقافه وإعادة إشعاله. والمفترض أن تتوفر لرواد الفضاء القدرة على إيقاف وبدء عملية احتراق الوقود حتى يمكنهم التحكم في طيران سفنهم الفضائية. وهناك طريقة واحدة تستعمل لوقف الاحتراق وهي نسف مقطع الفوهة من الصاروخ. لكن هذه الطريقة تمنع إعادة الإشعال.
تُستعمل صواريخ الوقود الصلب أساسًا في استخدامات الجيوش. ويجب أن تكون الصواريخ الحربية مستعدة للانطلاق في أي لحظة، ويمكن تخزين الوقود الصلب أفضل من أي وقود دافع آخر. وتوفر صواريخ الوقود الصلب الطاقة للصواريخ العابرة للقارات، بما في ذلك صاروخ مينوتيمان-2، وإم إكس، وكذلك للقذائف الصغيرة مثل هوك، وتالوس، وتِريرْ. وتُسْتَعْمَل صواريخ الوقود الصلب أداة إضافية لحمل الصواريخ مثل: صواريخ جاتو، وتستعمل كذلك بمثابة صواريخ صوتية. كما تستعمل صواريخ الوقود الصلب في عروض الألعاب النارية.
صاروخ الوقود الدافع السائل يحمل الوقود والمؤكسد كلا في خزان منفصل. يدور الوقود خلال غلاف تبريد المحرك قبل دخوله غرفة الاحتراق. هذه الدورة ترفع درجة حرارة الوقود للاحتراق وتساعد على تبريد الصاروخ.
صواريخ الوقود الدافع السائل. تحرق خليطًا من الوقود والمؤكْسِد في شكل سائل. وتحمل هذه الصواريخ الوقود والمؤكْسِد في صهريج منفصل. وتغذي شبكة من الأنابيب والصمامات عنصري الوقود داخل غرفة الاحتراق. وينبغي أن يمر الوقود أو المؤكسد حول الغرفة قبل المزج مع العناصر الأخرى. هذا من شأنه أن يبرِّد غرفة الاحتراق ويسخِّن مسبقًا عناصر الوقود للاشتعال.
تتضمن طرق تغذية الوقود والمؤكْسد إلى غرفة الاحتراق استعمال إما مضخات أو غاز ذي ضغط عال. وأكثر الطرق المألوفة هي استعمال المضخات. ويشغل الغاز المنتج باحتراق جزء صغير من الوقود المضخة التي تدفع الوقود والمؤكسد إلى غرفة الاحتراق. أما الطريقة الأخرى، فيدفع الغاز عالي الضغط الوقود والمؤكْسد إلى غرفة الاحتراق. ويمكن الحصول على مصدر الغاز ذي الضغط العالي من النيتروجين، أو بعض الغازات الأخرى المخزونة تحت الضغط العالي، أو من حرق كمية صغيرة من الوقود.
بعض أنواع الوقود السائل التي تسمى ذاتية الاشتعال تشتعل عندما يتلامس الوقود والمؤكسد. لكن معظم أنواع الوقود السائل تحتاج إلى جهاز إشعال. يمكن أن يشتعل الوقود السائل عن طريق شرارة كهربائية، أو حرق كمية صغيرة من مادة متفجرة صلبة داخل غرفة الاحتراق. يستمر الوقود السائل في الاحتراق ما دام سريان خليط الوقود والمؤكسد مستمرًا في الوصول إلى غرفة الاحتراق.
تُبنى أغلب خزانات الوقود السائل من الفولاذ أو الألومنيوم الرقيق عالي الصلابة. وأغلب غرف الاحتراق في هذه الصواريخ مصنوعة من الفولاذ أو النيكل.
يُنْتج الوقود السائل عادة قوة دفع أكبر من التي تنتج من احتراق نفس الكمية من الوقود الصلب في نفس الفترة الزمنية. كذلك فهو أسهل في بدء وإيقاف الاحتراق من الوقود الصلب. ويمكن التحكم في الاحتراق فقط بفتح أو غلق الصمامات.لكن يصعب التعامل مع الوقود السائل. فإذا خلطت عناصر الوقود دون إشعال، فإن الخليط سوف ينفجر بسهولة. كذلك يحتاج الوقود السائل إلى صواريخ أكثر تعقيدًا عما في حالة الوقود الصلب.
يستعمل العلماء صواريخ الوقود السائل لأغلب السفن التي تطلق إلى الفضاء؛ فعلى سبيل المثال، وفرت صواريخ الوقود السائل الطاقة للمراحل الثلاث في إطلاق مركبة ساتورن - ف.
صاروخ أيوني وهو نوع من الصواريخ الكهربائية. تحول ملفات التسخين الوقود مثل السيزيوم إلى بخار. تغير شبكة تأيين متسامتة من البلاتين الساخن أو التنجستن البخار إلى سيل من الجسيمات المشحونة كهربائيًا تسمى الأيونات.
الصواريخ الكهربائية.
تستعمل الطاقة الكهربائية لإنتاج قوة الدفع. وهذه الصواريخ تحتوي على 1- صواريخ القوس الكهربائي النفاث 2- صواريخ البلازما النفاثة 3- الصواريخ الأيونية. ويمكن أن تعمل الصواريخ الكهربائية لفترة أكثر بكثير من أي نوع آخر، لكنها تنتج قوة دفع أقل.
لا يقدر الصاروخ الكهربائي على رفع سفينة فضاء خارج المجال الجوي للأرض، لكنه يستطيع أن يدفع مركبة خلال الفضاء. ويعمل العلماء على تطوير الصواريخ الكهربائية لرحلات فضاء طويلة في المستقبل.
صواريخ القوس الكهربائي النفاثة تُسخِّن وقودًا غازيًا بشرارة كهربائية تسمى القوس الكهربائي. وهذه الشرارة يمكن أن تسخِّن الغاز إلى ثلاثة أو أربعة أضعاف درجة الحرارة المنتجة بصواريخ الوقود السائل أو الصلب.
صواريخ البلازما النفاثة نوع من صواريخ القوس الكهربائي النفاثة. يُوَلَّد سريان الغاز المتفجر بوساطة قوس كهربائي يحتوي على جسيمات كهربائية مشحونة. ويُسمى خليط الغاز وهذه الجسيمات بلازما. وتستعمل صواريخ البلازما النفاثة تيارًا كهربائيًا ومجالاً كهربائيًا لزيادة سرعة سريان البلازما من الصاروخ.
الصواريخ الأيونية تنتج قوة دفع بوساطة سريان جسيمات مشحونة كهربائية تسمى الأيونات. يُسمى جزء من الصاروخ الشبكة الأيونية التي تنتج الأيونات كأنها غاز خاص يسير فوق سطح الشبكة. تزداد سرعة سريان الأيونات من الصاروخ بوساطة مجال كهربائيِّ.
صاروخ نووي يستعمل الحرارة من مفاعل نووي لتحويل الوقود السائل إلى غاز. يمر معظم الوقود خلال المفاعل. ويسخن بعض الوقود بوساطة فوهة الصاروخ ويمر خلال التوربين الذي يدير مضخة الوقود.
الصواريخ النووية.
تُسخِّن الوقود بوساطة مفاعل نووي، وهو آلة تنتج الطاقة عن طريق انشطار الذرات. يصبح الوقود المراد تسخينه بسرعة غازًا متمددًا ساخنًا. وهذه الصواريخ تنتج طاقة تعادل ضعفي أو ثلاثة أضعاف ما تنتجه صواريخ الوقود الدّفعي الصلب أو السائل. ويعمل العلماء على تطوير الصواريخ النووية لرحلات الفضاء.
يُضَخ في الصواريخ النووية هيدروجين سائل إلى المفاعل خلال الجدار المحيط بمحرك الصاروخ. وتساعد عملية الضخ هذه على تبريد الصاروخ، وكذلك على تسخين الهيدروجين السائل. ويمر خلال المفاعل مئات من القنوات الضيقة. وعندما يمر الهيدروجين السائل خلال هذه القنوات، تقوم حرارة من المفاعل بتحويل الوقود إلى غاز متمدد في الحال. ويمر الغاز خلال فوهة العادم بسرعات قد تصل إلى 35,400كم/ساعة.
الصواريخ الموجهة المضادة للدروع بدأ الصراع بين الدبابات والأسلحة المضادة لها مع بداية استخدام الدبابات في ميادين القتال خلال الحرب العالمية الأولى، فقد كانت المدافع والرشاشات الثقيلة تستخدم في ذلك الوقت للتصدي لهجمات الدبابات التي كانت لا تزال بطيئة الحركة وخفيفة التدريع.
ومع نشوب الحرب العالمية الثانية واستخدام مدرعات أكثر تسلحاً وتطوراً، نشطت الجهود لتطوير الأسلحة المضادة للدبابات، إلا أن تطوير الدبابات لم يتوقف نظراً لأهمية بقائها كسلاح حسم في المعركة البرية.
ومع تطور الدبابات وزيادة سمك دروعها، ووصول مواسير المدافع إلى حدود لا يمكن تجاوزها لزيادة السرعة الفوهية للمقذوفات، وبعد أن أصبحت المقذوفات غير الموجهة المضادة للدبابات مثل (آر بي جي) (RBJ) غير قادرة على التعامل مع الدروع الحديثة، كان من الضروري أن يتطور السلاح المضاد لتزويد قدرته على الاختراق، ونتج عن ذلك تطوير الأجيال المختلفة من الصواريخ الموجهة المضادة للدروع.
مفهوم الصواريخ الموجهة المضادة للدروع:أنظمة الصواريخ الموجهة المضادة للدروع هي جملة الوسائط القتالية والتقنية التي تؤمن تدمير الأهداف المدرعة باستخدام الصواريخ الموجهة. ويدخل فيها: القاذف، والصاروخ، وجهاز الفحص والصيانة.
يتألف القاذف من منصة الإطلاق وجهاز التسديد (المنظار) ولوحة القيادة والتوجيه لإرسال الإيعازات إلى الصاروخ. ويمكن أن يكون القاذف محمولاً على الكتف أو منقولاً على عربة أو حوامة.. إلخ.
يتألف الصاروخ من رأس حربي وجنيحات وزعانف للتوازن والاستقرار، ومحرك صاروخ وأسلاك لنقل الأوامر.
أما جهاز الفحص والصيانة فهو عبارة عن عربة يتم فيها تحضير الصاروخ وفحصه.
المتطلبات الرئيسية للصواريخ الموجهة المضادة للدروع:
حتى تتمكن الصواريخ الموجهة المضادة للدروع من مواجهة تطور الدروع المعادية فإن هناك متطلبات رئيسية يجب أن تتوفر لهذه الصواريخ وأهمها ما يلي:
1 قدرة تدميرية عالية يمكن تحقيقها عن طريق:نسبة عالية لاحتمال الإصابة وهذا يتوقف على سرعة الصاروخ بالنسبة للهدف، وكذلك على قدرة الصاروخ على المناورة، ودرجة الآلية العالية التي تقلل من دور الرامي.
قوة تدمير عالية نتيجة حجم الرأس المدمرة، وقدرتها على الاختراق بالإضافة إلى المعدل العالي للضرب.
القدرة على العمل في الظروف المتغيرة ويتوقف ذلك على القدرة على تمييز الأهداف ليلاً والقدرة على مقاومة أعمال الإعاقة.
2 القدرة على البقاء نتيجة:ضعف احتمال إصابة قاعدة الإطلاق ويتحقق ذلك عندما يكون مدى الصاروخ أطول من مدى أسلحة الدبابات المعادية.
صعوبة اكتشاف مكونات النظام.
إمكانية التحميل على مركبات خفيفة ذات قدرة كبيرة على المناورة.
إمكانية الإستخدام مع المشاة والطائرات العمودية بدون الحاجة إلى تعديلات في الصاروخ نفسه.
سهولة التدريب والاستخدام والصيانة والإصلاح.
درجة وثوقية عالية .(High Reliability)
تصنيفات الصواريخ الموجهة المضادة للدروع:التصنيف الأول:وتقسم حسب سرعتها إلى صواريخ بسرعة دون الصوتية وصواريخ فوق الصوتية. ومعظم الصواريخ ذات سرعة دون صوتية مما يسمح باستخدام طريقة بسيطة لنقل الأوامر بالأسلاك. أما السرعة فوق الصوتية فتستخدم في القواذف المنقولة على العربات أو الحوامات وحيث تنتقل الأوامر إلى الصاروخ باللاسلكي أو بالأشعة تحت الحمراء أو بالليزر وأخيراً التوجيه بأسلوب (اضرب وانس).
التصنيف الثاني:وتقسم حسب مداها إلى بعيدة المدى فوق 2000م، ومتوسطة المدى من 1000 حتى 2000، وقريبة المدى دون 1000م.
التصنيف الثالث:وتقسم حسب طريقة التحكم بها إلى
ثلاثة أنواع:
الطريقة الأولى التحكم اليدوي: وفيه يرصد الرامي باستمرار تحرك الهدف ومسار الصاروخ بواسطة المنظار. ويحدد بالنظر انحراف الصاروخ عن خط التسديد ثم يحرك عصا التوجيه بالمدى والاتجاه بما يعادل هذا الانحراف. وبتحريك هذه العصا تنتج إشارات كهربائية وتنتقل إلى الصاروخ على خطوط اتصال مختلفة منها السلكية واللاسلكية وبالأشعة تحت الحمراء والليزر (لكن الغالبية العظمى في الصواريخ من الجيل الأول سلكية). وتصل الإشارات الكهربائية إلى أجهزة التحليل في الصاروخ وتتحول إلى أوامر تصل إلى جنيحات وزعانف الصاروخ فتحركها وتعدل من مسار الصاروخ حسب الوجهة المطلوبة.
الطريقة الثانية التحكم النصف آلي: وفيها يكتفي الرامي بتتبع حركة الهدف فقط عن طريق تصويب المنظار نحو الهدف ونقل خط التسديد باستمرار وفقاً لحركة الهدف. ولا يوجد في هذه الطريقة عصا توجيه، بل يمتطي الصاروخ حزمة الأشعة الصادرة عن نظام التسديد والمتجهة نحو الهدف. وإذا كان الرامي في التحكم اليدوي هو الذي يحسب انحراف الصاروخ عن الهدف بتحريك عصا التوجيه ففي الطريقة الثانية يجرى تحديد انحراف الصاروخ عن خط التسديد وإعداد إيعازات القيادة (الإشارات الكهربائية) بصورة آلية ضمن جهاز القيادة استناداً لاتجاه منظار التسديد فقط.
الطريقة الثالثة التحكم الآلي: وفيها يقتصر عمل الرامي على اختيار الهدف والضغط على الزناد. فيتوجه الصاروخ بصورة آلية نحو الهدف. ويتم ذلك إما برأس التوجيه الذاتي أو بمساعدة أجهزة رادارية تتبع الهدف تلقائياً ويمتطي الصاروخ أشعتها.
يستخدم في الصواريخ الموجهة المضادة للدروع محركات تعمل على الوقود الصلب الذي يؤمن ضمانة عالية في العمل وإمكانية حفظ الصاروخ لمدة طويلة. وأهم مزايا الصواريخ الموجهة المضادة للدروع دقتها العالية في إصابة الأهداف المتحركة (70 90%) والقدرة العالية على الخرق 700 ملم وسطياً (وقد تجاوزت مؤخراً 1000ملم)، والمدى الكبير للطيران (حتى 5 كلم) وإمكان الإطلاق من مكان يبعد 50 80 م عن مربض الصاروخ.. إلخ.
التصنيف الرابع:وتقسم الصواريخ الموجهة المضادة للدروع إلى أجيال:
1 الجيل الأول:وهي الصواريخ الموجهة المضادة للدروع ذات التوجيه السلكي التي يجب على الرامي أن يتحكم في توجيهها يدوياً بواسطة عصا التوجيه حتى الهدف، وعلى الرامي أيضاً أن يرصد الهدف وصاروخه الموجه في آن واحد من خلال منظاره. وهذا يتطلب دقة كبيرة. كذلك يجب أن يتمتع الرماة بكفاءة عالية وأن يمارسوا تدريباً متواصلاتً. وقد ظهر في هذه الصواريخ عيوب كثيرة لم تكن التكنولوجيا حينذاك قادرة على تلافيها. ومن هذه العيوب:
طريقة التحكم: فطريقة التحكم اليدوية تتطلب من الرامي أن يقوم بثلاث عمليات بآن واحد وهي: أولاً متابعة الهدف، وثانياً متابعة الصاروخ، وثالثاً تعديل مسار الصاروخ عن طريق تحرك عصا التوجيه في كل الاتجاهات. وكان أقل خطأ في التوجيه يؤدي إلى إبعاد الصاروخ عن هدفه.
يتطلب توجيه الصاروخ وجود حساسية مرهفة ومهارة عالية لدى الرماة وتدريباً شاقاً ومتواصلاً لهم إذ أن الانقطاع عن التمرين في إجازة طويلة مثلاً يفقد الرامي بعض الحساسية. كما يتطلب رباطة جأش وبرودة أعصاب. فتوتر الأعصاب قد يفقد الرامي المقدرة على الاستجابة لحركة الصاروخ والهدف.
نتيجة لما سبق لم يكن احتمال الإصابة مضموناً دوماً.
نظراً لأن سرعة تحليق الصاروخ كانت منخفضة فقد أدى ذلك إلى بقاء الرامي مدة طويلة عرضة لنيران العدو.
إن عملية التدريب المكثفة تكلف نفقات باهظة إذ من الضروري أن يطلق الرامي عدة صواريخ قتالية.
2 الجيل الثاني:أتى الجيل الثاني من الصواريخ الموجهة المضادة للدروع ليعفي الرامي من التحكم في الصاروخ وإدارة مقبض التوجيه. ذلك أن صواريخ هذا الجيل تتمتع بجهاز نصف آلي، وليس على الرامي سوى إبقاء علامة التسديد منطبقة على الهدف حتى وصول الصاروخ إليه. أضف إلى ذلك أن سرعة هذه الصواريخ الموجهة أكبر بكثير من سابقتها مما قلل من مدة تحليقها. ناهيك عن أن شحناتها أصبحت أكثر فاعلية، كما زادت قدرتها على اختراق التدريع.
الجيل الثالث:أفضل نموذج من هذا الجيل الثالث هو الصاروخ الأمريكي الموجه المضاد للدروع (هيل فاير) Hell Fire الذي يتمتع بمدى كبير، ويسهل مهمة الرامي ويوفر جهده وأعصابه، وذلك أنه لا يتطلب سوى التسديد المبدئي نحو الهدف والإطلاق. تبعاً لشعار (ارم وانس) (Fire And Forget) فالصاروخ يتجه تلقائياً نحو الهدف مستهدياً بكاشفه الليزري على الشعاع الليزري الذي يذهب من المنظومة إلى الهدف وينعكس منه إليها، فيكون الشعاع بمثابة خط سير الصاروخ. أما سرعته فتزيد على 4 5 ماك تقريباً وهي تعتبر لذلك سرعة فرط صوتية.
اتجاهات التطوير:يجرى تطوير الصواريخ المضادة للدروع في عدة اتجاهات بهدف تحقيق المتطلبات الرئيسية السابقة وأهم هذه الاتجاهات:
زيادة المدى:
ويتم ذلك بزيادة المادة القاذفة بدون إضافة وزن جديد للصاروخ باستخدام الألياف البصرية (Fibre Optics) الخفيفة بدلاً من سلك التوجيه التقليدي المصنوع من السبائك المعدنية، وتهدف زيادة المدى إلى تمكين الصاروخ من إصابة الدبابة على مسافات أكبر من مدى الضرب المباشر لها، وبالتالي قبل التعرض لنيرانها.
زيادة القدرة على الاختراق:وذلك بزيادة قطر الرأس المدمر (القدرة على الاختراق تعادل من 5 7 أمثال عيار الرأس) وقد بلغ قطر الرأس المدمر للصاروخ (Tow 2B) 152 ملم، وكذلك يمكن زيادة القدرة على الاختراق بتزويد الرأس المدمر للصاروخ بمقدمة أنبوبية بهدف منع الانفجار المبكر للرأس المدمر على الطبقات الخارجية من درع الدبابة، وبالتالي الاستفادة من تأثير الانفجار على الدرع الرئيسي مما يحقق الاختراق، وقد زود الصاروخ (تاو) والصاروخ (هوت) و (ميلان) بتلك المقدمة الأنبوبية.
تطوير أسلوب التوجيه:تجري التجارب لتطوير أسلوب توجيه الصاروخ بركوب الشعاع، وذلك باستخدام الموجات المليمترية بما يسمح بعدم التقيد في المدى بطول سلك التوجيه، وقد استخدمت الولايات المتحدة أسلوب نقل إشارات وأوامر التوجيه للصاروخ باستخدام الألياف البصرية، وذلك لتلافي التشويش على الصاروخ الناتج عن تأثير أي مجال كهربائي على سلك التوجيه وتنقل الأوامر في صورة إشارات ضوئية.
وتتميز الألياف البصرية بإمكانية تداول حجم أكبر من المعلومات عبر سلك مساحة مقطعه أقل من مساحة مقطع سلك التوجيه العادي، وبالإضافة إلى خفة وزنه، مما يساعد على التغلب على مشكلة زيادة حجم الصاروخ لاستيعاب كمية أكبر من السلك، وتزود مقدمة الصاروخ بكاميرا تلفزيونية تقوم بنقل صورة للأرض، ومنطقة الأهداف عبر سلك التوجيه إلى الرامي الذي يقوم باختبار خط المرور المناسب.
زيادة المرونة وخفة الحركة:بتحميل الصاروخ على مركبات خاصة مجهزة أو بتسليح الطائرات العمودية بها.
التوسع في إنتاج الصواريخ المتعددة المهام: مثل الصاروخ المضاد للدروع وللطائرات في نفس الوقت، حتى يمكن مواجهة الأخطار المتنوعة التي تهدد القوات في الميدان، وذلك بأقل قدر من نظم التسليح وبالاقتصاد في القوى والتكاليف.
برامج لتطوير الصواريخ الموجهة المضادة للدروع:إن انتشار نظم التدريع المتطورة مثل الدروع الرد فعلية (Reactive Armour) في دبابات القتال الرئيسية يعني أن كثيراً من الصواريخ المضادة للدروع. التي تعتمد في تدمير الدبابة على الرؤوس المدمرة شديدة التفجير. أصبحت غير قادرة في الوقت الحاضر على إصابة الدبابة من الأمام. مما حدا بالشركات المنتجة للسلاح لتطوير أجيال جديدة من الصواريخ الموجهة المضادة للدروع تتميز بالسرعة وشدة التدمير لهزيمة الأجيال الحالية والمستقبلية من الدبابات الحديثة. ونستعرض في السطور التالية مجموعة من هذه الصواريخ الموجهة المضادة للدروع، نذكر منها:
ميلان 3:يشتمل (ميلان 3) الحديث الذي طورته شركة يورميسال العالمية على رأس مترادف (أي ذو حشوتين مترادفتين) ونظام تحكم شبه آلي نحو خط التسديد ويمتاز بمناعة أكبر ضد التشويش. ويساعد الرأس المترادف المستخدم أيضاً في (ميلان 2 تي) والذي أنتج في 1993م الصاروخ على اختراق الدروع الرد فعلية.
يتألف طاقم (ميلان 3) من شخصين حيث يقوم الثاني بحمل قذائف إضافية ويساعد في نصب وتركيب نظام القاذف، وكل ما يتوجب على الرامي فعله أثناء القتال الإطباق على الهدف حتى ارتطام الصاروخ به، ويولد نظام القذف أوامر التوجيه آلياً لإبقاء الصاروخ على خط نظر الرامي. يستخدم صاروخ (ميلان 3) مصباح (زينون) الومضي المرتبط بنظام استشعاري للتميز في نظام القذف. وعن طريق مزامنة وضبط مصباح الصاروخ مع جهاز التمييز مباشرة قبل الإطلاق، يصبح من المستحيل تقريباً التشويش على نظام التوجيه، فجميع أوامر التوجيه ترسل إلى الصاروخ أثناء طيرانه بوساطة سلك تخانته 0.4 ملم ينحل عن بكرة موجودة داخل الصاروخ.
وحالما يتم إطلاق الصاروخ، يقوم مولد غازي بلفظ الماسورة الحاوية للصاروخ من نظام القذف للسماح بتلقيم ماسورة أخرى. وكما هي الحال في معظم الصواريخ الموجهة المضادة للدروع تأتي ماسورة الحاوية للصاروخ مختومة من المصنع ولا تتطلب أي تجهيز قبل التلقيم والإطلاق. هذا ويبلغ المدى الأقصى ل (ميلان 3) 2000متر.
كونكرز 9 كيه 113 إم:يمتاز نظام(Konkurs - 9 K113M) الروسي الذي يماثل بمفهومه وعمله نظام (ميلان) بمدى أقصى يصل حتى 4000 متر. أما رأس كونكرز الحربية البالغ قطرها 135 ملم تحتوي شحنتين مترادفتين ويستطيع أن يخترق وجهاً لوجه درعاً سماكته 750 800 ملم.
كذلك يشبه تصميم نظام قذف كونكرز ذلك الخاص ب (ميلان) عموماً، فهو يتألف من مسند ثلاثي الأرجل يحمل ماسورة القذف ومنظار بيرسكوبي ونظام للتوجيه على الجهة اليسرى. ومن أجل العمليات الليلية وفي الضوء الخافت يمكن للرامي أن يركب جهاز تصوير حراري فوق المنظار البصري. وكما هو الحال في (ميلان) أيضاً، يقوم مولد غازي بدفع الصاروخ من ماسورته قبل اشتغال المحرك الرئيسي للصاروخ مما يساعد نظام القذف على التخفي.
بترخيص من الشركة الأصلية عدلت شركة (بهارات دايناميكي) الهندية وحدة إطلاق كونكرز محلياً لتمكينها من إطلاق صواريخ (ميلان) المصنعة في الهند وأطلقت على هذا الهجين اسم (فليم) (Flame).
تاو 2 بي (بي جي إم 71 إف):طورت شركة هيوز Hughes الأمريكية نسخة حديثة لنظام (Tow 2B (BGM-71F) وزودت هذه النسخة برأس حربي يهاجم الدروع من الأعلى على خلاف النسخ الأقدم ذات الهجوم المباشر. وتشتمل الرأس على حشوتين خارقتين تطلقان باتجاه الأسفل بوساطة صمامة مغناطيسية بصرية تستشعر الهدف عندما يصبح الصاروخ فوقه. وهذا يضمن مهاجمة العربات المدرعة من أضعف نقطة فيها.
أما النسخة Tow 2A (BGM-71E) فقد زودت برأس HEAT الحربية 152 ملم شديدة الانفجار للهجوم المباشر المجهز بمجس في مقدمته ويحمل شحنة تمهيدية لتدمير الدرع الردي الفعل. كذلك احتوى Tow 2 (BGM-71D) الأقدم على مجس أمامي لتوفير أفضل مسافة للرأس الحربية شديدة الانفجار (من خارج مدى الدفاعات المعادية). ويبلغ المدى الأقصى لجميع النسخ 3750 متر حيث يمكن إطلاقها من قاذف مثبت على الأرض كما يمكن إطلاقها من الحوامات أو من على متن العربات. تجدر الإشارة إلى أنه يجري الآن تطوير لنظام الصاروخ المتقدم (FOTT) ليحل محل الصاروخ (Tow) وهو صاروخ بعيد المدى يستخدم الألياف البصرية في التوجيه ويتميز بدرجة عالية من التدمير، وسوف تجهز به وحدات المشاة الخفيفة وهو من نوع (ارم وانس).
جافلين:طورت شركة تكساس إنسترومنتس Texas Instrument بالتعاون مع لوكهيد مارتن Lockheed Martin نظام جافلين Javelin الخفيف القابل للحمل بوساطة شخص واحد والذي يصل وزنه 3.22 كلج لصالح الجيش الأمريكي.
يمتاز صاروخ جافلين المضاد للدروع بأنه يعمل على مبدأ (ارم وانس) ويشتبك بصورة آلية مع أي هدف يختاره الرامي بمساعدة التوجيه بالأشعة تحت الحمراء. ويبلغ مدى النظام 2000 متر.
تحتوي وحدة إطلاق جافلين الآلية على منظار ليلي الذي يثبت على ماسورة الإطلاق ويستخدم لمسح منطقة الهدف. لتسديد الصاروخ، يقوم الرامي ببساطة، بتطبيق تقاطع شبكية المنظار على الهدف المقصود وبعد الإقفال يطلق الصاروخ. ويمتاز جافلين أيضاً بإطلاقه (اللطيف) مما يتيح استخدامه من داخل الأبنية.
يتخذ جافلين مساراً غاطساً أي أنه ينقض على هدفه من الأعلى، لكنه في الوقت ذاته يمتلك خيار انتقاء طريقة الهجوم المباشر ضد الأهداف. ويدعي المصنعون بأن رأسه الحربية المترادفة تستطيع خرق أصعب الأهداف المتحركة والثابتة.
ماكام:يمتاز نظام ماكام MACAM المضاد للدروع الذي طورته شركة جيكونسا Gyconsa الإسبانية بالتعاون مع شركة هيوز Hughes الأمريكية والذي ينتمي للجيل الثالث ويطلق من على الكتف بامتلاكه لوصلة بيانية ليفية بصرية وجهاز للتصوير بالأشعة تحت الحمراء من أجل توجيهه على طريقة (ارم وانس). ويبلغ مدى ماكام الأقصى 5000 متر.
يتخذ ماكام إما مسار هجوم مباشر أو مساراً عالياً يسمح له بالانقضاض على هدفه من الأعلى مستخدماً في هذه الحالة رأساً حربياً ذو حشوتين منضدتين مترادفتين يميل باتجاه الأسفل.
بيل 2:اشتهر نظام بيل Bill الذي طورته شركة بوفرز السويدية في عام 1987م بأنه كان أول صاروخ ذو رأس مائل نحو الأسفل وهاجم الدبابات من الأعلى ويمتاز بامتلاكه لرأس حربي شديد الانفجار 150 ملم يمكنه أن يطير على ارتفاع 57.0م فوق خط نظر الرامي لضمان طيرانه فوق الهدف. يصحح توجيه الصاروخ أثناء الطيران باستخدام التوجيه شبه الآلي نحو خط التسديد بالاستفادة من التوجيه السلكي ومرشد التوجيه الليزري. وقد تم تطوير جهاز تصوير حراري يركب على النظام من أجل العمل أثناء الليل وفي أحوال الرؤية السيئة. إثر ظهور الدرع الردي الفعل طورت الشركة Bill-2 ذو الرأس الحربي المعدل الذي يحتوي على شحنتين مترادفتين.
يحافظ (بيل 2) على مساره العلوي ويطلق حشوة تمهيدية 80 ملم موجودة في مقدمته حال مروره فوق الهدف، وهذه الحشوة مائلة في الحقيقة نحو الوراء قليلاً كي تستطيع تدمير أي درع إضافي ردي الفعل يحمي نقطة التصويب على الدرع الرئيسي. ويبلغ مدى (بيل 2) 2200 متر=>
نبذة تاريخية
المحاربون الصينيون أطلقوا صواريخ خلال معركة في القرن الثالث عشر. انتشر استعمال الصواريخ كأسلحة وكعروض نارية من الصين إلى أغلب آسيا وأوروبا خلال القرن التالي.
البداية. يعتقد العلماء أن الصينيين هم الذين اخترعوا الصواريخ، لكن لا أحد يعلم متى كان ذلك. يصف المؤرخون أسهم الحرب الطائرة على أنها كانت صواريخ استعملت في الجيوش الصينية عام 1232م. انتشر استعمال الصواريخ في القرن الرابع عشر الميلادي في آسيا وأوروبا. وهذه الصواريخ الأولى كانت تحرق مادة تسمى المسحوق الأسود، الذي يتكون من فحم نباتي، ونترات البوتاسيوم وكبريت. لكن لعدة مئات من السنين كان استعمال الصواريخ في عروض الألعاب النارية يفوق في الأهمية استخدامها في المجال العسكري.
خلال بداية القرن التاسع عشر الميلادي، طور وليم كونجريف وهو ضابط في الجيش البريطاني الصواريخ التي تحمل متفجرات. وكان وزن بعض هذه الصواريخ يصل إلى 27 كجم ويحلق إلى ارتفاع 2,5كم. استعملت القوات البريطانية صاروخ كونجريف ضد جيش الولايات المتحدة خلال حرب عام 1812م. كذلك طورت كل من روسيا والنمسا وبعض الأقطار الأخرى الصواريخ الحربية خلال أوائل القرن التاسع عشر الميلادي.
طوّر وليم هيل المخترع الإنجليزي دقة الصواريخ الحربية، وقد وضع ثلاث زعانف بدلاً من الذيل الخشبي الطويل الذي كان يستعمل لتوجيه الصاروخ. واستعملت قوات الولايات المتحدة صواريخ هيل في الحرب المكسيكية (1846-1848م) وخلال الحرب الأهلية الأمريكية (1861-1865م)، استعملها كلا الجانبين.
صواريخ أوائل القرن العشرين. وضع مدرس ثانوي روسي اسمه، كونستانتين تسيولكوفسكي أول نظرية صحيحة لطاقة الصاروخ. وقد وصف نظريته في مقالة علمية نشرت عام 1903م. وأصبح روبرت جودارد العالم الأمريكي مبتدع الصواريخ الحديثة. ففي عام 1926م، تمكن جودارد من إطلاق أول صاروخ ذي وقود دافع سائل. ارتفع الصاروخ إلى مسافة 56 م في الهواء بسرعة حوالي 97كم/ساعة.
خلال الثلاثينيات من القرن العشرين تقدمت أبحاث الصواريخ في ألمانيا والاتحاد السوفييتي (سابقًا) والولايات المتحدة. فقد قاد هيرمان أوبرث مجموعة صغيرة من المهندسين الألمان والعلماء الذين قاموا بتجارب على الصواريخ، وقاد علماء الصواريخ الروس تساندر، وآي.أيه ميركولوف. بينما ظل العالم جودارد كما هو رئيس الباحثين في الولايات المتحدة.
خلال الحرب العالمية الثانية، طوّر علماء الصواريخ الألمان تحت قيادة فِرْنر فون براون القذيفة الموجهة القوية في-2 (v-2). قذفت ألمانيا لندن وأنتورب ببلجيكا بمئات من قذائف في-2 (v-2) خلال الأشهر الأخيرة من الحرب. واستولت القوات الأمريكية على عدة قذائف في-2 (v-2) وأرسلتها إلى الولايات المتحدة ليجري العلماء أبحاثهم عليها. وذهب فون براون بعد الحرب ومعه أكثر من 200 عالم ألماني إلى الولايات المتحدة ليكملوا ما بدأوه في الصواريخ، بينما ذهب بعض العلماء الألمان الآخرين إلى الاتحاد السوفييتي (سابقًا).
صواريخ الارتفاع العالي. استفادت الولايات المتحدة من قذائف في-2 (v-2) التي استولت عليها من ألمانيا طوال عدة سنوات بعد الحرب العالمية الثانية، وقامت بمواصلة التجارب عليها، وكانت هذه هي أولى أبحاث الصواريخ التي تستعمل للارتفاعات العالية.
صممت أول صواريخ عالية الارتفاع وتم بناؤها في الولايات المتحدة وهي واك الجماعية وإيروبي، والفايكنج. وقد وصل الصاروخ واك الذي يبلغ طوله ستة أمتار إلى ارتفاع حوالي 72كم خلال تجارب الطيران عام 1945م. بينما ارتفعت الأنواع الأولى من إيروبي إلى ما يقرب من 120كم. وفي عام 1949م أطلقت البحرية الأمريكية صاروخ فايكنج وهو صاروخ ذو متفجرات سائلة بُني أساسًا على نظام في-2 (v-2). ويبلغ طول الفايكنج أكثر من 14م، أي أطول بكثير من إيروبي. لكن الأنواع الأولى من الفايكنج ارتفعت فقط إلى حوال