أهلا وسهلا بك زائرنا الكريم، اذا كانت هذه زيارتك الأولى للمنتدى، فيرجى التكرم بالاطلاع على القوانين بالضغط هنا. كما يشرفنا أن تقوم بالتسجيل بالضغط هنا إذا رغبت بالمشاركة في المنتدى، أما إذا رغبت بقراءة المواضيع والإطلاع فتفضل بزيارة المواضيع التي ترغب.
موضوع: موسوعة كيف يعمل (((متجدد))) السبت 15 ديسمبر 2012 - 17:44
موسوعة كيف يعمل : هي موسوعة متجددة توضح كيف تعمل الاسلحة والقطع الحربية مثلاً كيف تعمل الغواصة وكيف تطير الطائرة المروحية وكيف يعمل الصاروخ وكيف تطير الطائرة النفاثة وكيف تعمل حاملة الطائرات وكيف وكيف وكيف .... الخ ابدأ مع حضراتكم مع اول وحش نتعلم كيف يعمل وحشنا اليوم هو القاتل الصامت وهو الجحيم المحدق بكل ميكن ان يعتبر نفسه قوياً اهدافه برية وبحرية يضرب ولاتعلم اين هو ينسحب بهدوء ليترك وراءه ملايين الدولارات وقد جعلها خردة انها الغواصة .
الغواصات
الغواصات سفينة متخصصة يمكنها أن تغوص تحت سطح الماء وكذلك أن تطفو وبإمكانها التنقل تحت سطح الماء تم استعمالها لأول مرة على نطاق واسع أثناء الحرب العالمية الأولى لأغراض عسكرية، وتستخدم بشكل واسع في سلاح البحرية للدول العظمى كروسياوالولايات المتحدةوفرنساوالمملكة المتحدة. الغواصات الغير حربية تستعمل عادة لأغراض البحث العلمي. تم لاحقا استعمال الغواصات لتحميل الأسلحة النووية. هناك غواصات تستعمل لأغراض سياحية
وتعد الغواصات إحدى الاختراعات الحديثة التي استطاعت أن تتجاوز الكثير من المشاكل والصعوبات في السفن والبواخر، فهي تستطيع السير فوق الماء وتحته، وبالتالي تستطيع التواري عن أنظار السفن المعادية، والتسلل إلى مناطق معينة، إذ أنها أنشأت أول مرّة بغرض الاستخدامات العسكرية.
فيما تستخدم أنواع أخرى من الغواصات المدنية في البحوث العلمية والاكتشافات وسبر قيعان المحيطات.
نبذة تاريخية : أول غواصه صممت في عام 1620 على يد الهولندى فون دريبل حيث صمم غواصة صغيرة لها 12 مجدافا غاصت في نهر التايمز على عمق 3.5 - 4.5 متر وسارت 15 ساعة.
في عام 1776 قام الأمريكي دافيد بوشنيل ببناءغواصة صغيرة مصنوعة من البلوط بيضاوية الشكل لها ذراع تقوم بتشغيل محرك لولبي وأسماها السلحفاة أستخدمت في أثناء الحرب الأهلية الأمريكية.
الغواصة العثمانية (عبد الحميد) هي أول غواصة في العالم تطلق طوربيد مباشرة من تحت سطح الماء، وكان اسمها أولاً "تحت البحر" وأدخلت ضمن أسطولها الحربي، وكانت هذه أول مرة يستخدم فيها العثمانيون الغواصة.
تم تصنيعها عام 1791 م في عهد السلطان أحمد الثالث، وقد أشرف علي صناعتها كبير مهندسي مصنع السفن العثماني "إبراهيم أفندي".
أما الغواصة الحديثة فقد ظهرت عندما أمكن من تجهييز القوارب بمحرك كهربائي صممه الأمريكي جون فيليب هولند وبإضافة الجهاز الذي صممه السويدي ثورستين نوردنفلت إلى جهاز هولند وهو يعمل على قذف الطوربيد داخل السفينة أصبحت الغواصة سلاحا مؤثرا وقد سميت هذه الغواصة هولند وقد أنزلت في ميناء إليزبيث بولاية نيوجيرسي. عام 1897 وسارت فوق الماء بآلة تعمل بالجازولين وعندما تغوص تعمل بمحركات كهربائية تغذيها بطاريات في مجاميع وقد تم استبدالها لاحقا بآلة الديزل بسبب قابلية الجازولين لأشتعال.
خلال الحرب العالمية الأولى تمكن الألمان بصنع غواصات تدعى قوارب بو التي كان طول الواحد منها 87.3 متر وعرضها 8 أمتار.
في عام 1929 تم بناء الغواصة الفرنسية سوركوف كان طولها 120 مترا وعرضها 9.8 أمتار وكان يوجد في مقدمة الغواصة مدفعان عيار 203 مم.
وقد إخترع الألمان جهازا يعرف باسم شنوركل يسمح بإدخال الهواء إلى الغواصة أثناء وجودها تحت سطح الماء وقد أدى ذلك إلى زيادة سرعة الغواصة زيادة كبيرة.
مع مرور الوقت أصبحت الغواصات تعمل بالطاقة النووية حيث تم عام 1954 ظهور الغواصة نوتيلوس وقد بلغ حجمها 103.3 متر طولا و8.6 أمتار عرضا وتستطيع الغوص لعمق 229.3 متر. عام 1958 كانت الغواصة نوتيلوس أول غواصة تصل إلى القطب الشمالي وقد تم من خلالها اكتشاف ممر بحري شمالي غربي. كيف تعمل الغواصة : تعتمد الغواصات الحديثة في عملها على مبدأ قانون أرخميدس للطفو فوق الماء. جميع السفن وكذلك الغواصات لهادفع مائي أعلي من وزنها. أو بمعنى أخر أنها تزن أقل من وزن الماء الذي تزيحه إذا ما انغمست كلها في الماء. ولكي تغطس الغواصة تحت الماء فلا بد من العمل على زيادة وزنها. وتوجد في الغواصة خزانات يمكن ملئها بالماء فتهبط أو يُفرغ الماء منها بالهواءالمضغوط فتصعد على سطح الماء.
وعادة ما تستخدم الغواصة الخزانين الأمامي والخلفي للغطس أو الصعود فوق سطح الماء بملئ ذلك الخزانين بالماء أو ملئهما بالهواء. (ملحوظة: وهذا ما تفعله الأسماك حيث توجد لديهم حوصلة هوائية في البطن يملأ بالماء ويفرغ). وأثناء انتقال الغواصة تحت الماء تكون الخزانات ممتلئة بالماء. وهناك نوع من الغواصات تحتوي على تلك الخزانات موازية لجسم الغواصة تحت الجدار الخارجي يمينا ويسارا. أما بالنسبة إلى ضبط العمق بدقة فتستخدم لهذا الغرض خزانات أصغر، وهذه توجد عادة بالقرب من مركز ثقل الغواصة، أو تكون خارجية ومعزولة بطول جسم الغواصة وذلك لتفادي الانقلاب.
أما حركة الغواصة في الماء فيتم التحكم بها عبر قوّة الدفع التي تقوم بها المحركات، فضلاً عن الزعانف الحديدية الموجودة على جوانب وفي مؤخرة الغواصة.
تأمين الهواء لكادر الغواصة :
تخرج الغواصات الهجومية في دورية لعدة شهور، وكثيرًا ما تتوقف في موانئ معينة في تلك الرحلة. أما غواصات الصواريخ البالستية فتستمر دوريتها لمدة 60 يومًا، وتكاد تبقى خلال كل تلك الفترة تحت الماء. تملك الغواصات النووية القدرة على إنتاج هوائها الخاص وماء الشرب. فعن طريق العملية المسماة التحليل الكهربائي يتم استخلاص الأكسجين من ماء البحر وتوفير الهواء اللازم للطاقم. وتعمل مصفيات كيميائية خاصة على تنقية الهواء من العناصر الضارة داخل الغواصة. وهناك صفائح رصاصية تغلف المفاعل النووي لوقاية الطاقم من خطر الإشعاع. ويُقطر ماء الشرب النقي من ماء البحر بآلات خاصة. الضغط على جانبي الغواصة : ويتراوح ضغط الماء على جدران الغواصة بين 4 ميجا باسكال (40 ضغط جوي) للغواصة المصنوعة من الحديد الصلب، و 10 ميجا باسكال (100 ضغط جوي) للغواصة الروسية نوع K-278 Komsomolet وجدرانها مصنوعة من سبيكة من الحديد الصلب المحتوي على التيتانيوم. وبينما يتغير الضغط الخارجي الواقع على جدران الغواصة بالصعود والنزول في الماء، يبقى ضغط الهواء داخلها لا يتغير.
المصادر https://army.alafdal.net/t41684-topic http://www.lahaonline.com/articles/view/15889.htm http://murhaf16.blogspot.com/2012/02/submarine.html http://ar.wikipedia.org/wiki/%D8%BA%D9%88%D8%A7%D8%B5%D8%A9
موضوع: رد: موسوعة كيف يعمل (((متجدد))) السبت 15 ديسمبر 2012 - 18:59
ثانياً كيف يعمل الصاروخ
أول من قام باستخدام الصواريخ هم الصينيون القدامى، ثم انتقلت بعد ذلك ليستخدمها العرب، ونقلها العرب للأوروبيين، وطوروها بعد ذلك حتى أصبحت -رغم استخداماتها العلمية- من آلات ومعدات الحرب الأولى.
وأغلب الظن أن الصواريخ الصينية الأولى لم تكن صواريخ بالمعنى الدقيق، فحسب المؤرخين الغربيين فإنها كانت عبارة عن سهام بها رؤوس ملتهبة تطلق بواسطة الأقواس على الأعداء، ولكن هذه السهام كان لها بالغ الأثر في الحرب التي وقعت في 994 ميلادية في مدينة تسوتنج، وبعدها بثلاثة قرون تطورت الصواريخ بشكل كبير حتى أصبحت الصواريخ بمعناها المعروف شائعة الاستخدام، وكانت في ذلك الوقت عبارة عن أنابيب محشوة بمسحوق البارود الأسود (خليط من النترات ومسحوق الفحم النباتي والكبريت)، تربط إلى السهام، وفتحاتها في عكس اتجاه السهام، ثم يشعل المسحوق فتخرج منه الغازات التي تدفع بالسهم.
وفي سبيل أحكام تصويب هذه الصواريخ، تم تطوير زعانف يتم تثبيتها في مسارها، بالإضافة إلى طريقة أخرى اتبعها آخرون حيث جعلوا في فوهة الصاروخ من أسفل شبه عجلة، أنصاف أقطارها صفحات مائلة، تخرج الغازات من الصاروخ فتديرها هي والصاروخ بسرعة، يكون من نتيجتها تثبيت الصاروخ في مساره.
نظرية عمل الصواريخ
الصاروخ يعمل بالنظرية الثالثة للحركة لاسحاق نيوتن التى تنص على ان لكل فعل رد فعل مساوى لة فى المقدار ومضاد لة فى الاتجاه وبالتالى فان التدفق المستمر للوقود المحترق فى اتجاه واحد يسبب استمرار حركة الصاروخ الى الامام كما تعمل ايضا الطائرات النفاثة بنفس النظرية ويساعد الاكسجين الموجود فى الهواء على احتراق الوقود الخاص بالصواريخ وبذلك يجب ان يعمل الصاروخ خارج الهواء الجوى مع مراعاة وجود الاوكسوجين الخاص بة .
مكونات الصواريخ واحتياجاتها من الطاقة الكهربية
تتحد الصواريخ مهما تنوعت فى اقسامها الثلاث الاساسية واولها الانظمة الالكترونية المسؤلة عن التوجية والاتزان وتتبع الاهداف ومقاومة الاعاقة الالكترونية واصدار الاجرائات المضادة لكل عملية وغالبا ما توجد هذة الانظمة فى مقدمة الصاروخ ويليها الراس الحربى بمنتصف الصاروخ ويحتل القسم الثالث مجموعة نظام الدفع والمحرك الصاروخى والوقود "سائل صلب مهجن " وتحتل البطارية او المولد مكانها خلف مكونات نظام التوجية او الراس الحربى حسب تصميم كل صاروخ وتحتاج المكونات الالكترونية لتغذية دوائرها بالطاقة الكهربية ولتنشيط مصادر الانبعاث الحرارى والرادارى ومستشعرات رصد حركة الاهداف وحواسب المعالجة وتتنوع هذة الطاقة الكهربية من جهد مستمر مختلف القيمالفولتية الى جهد متردد ثلاثى او احادى الاوجة ومختلف فى القيمة والتردد طبقا لنوع كل مكون .
هناك أربعة أنواع رئيسية من الصواريخ: 1- صواريخ الوقود الدافع الصلب 2- صواريخ الوقود الدافع السائل 3- الصواريخ الكهربائية 4- الصواريخ النووية.
- صواريخ الوقود الدافع الصلب
- صواريخ الوقود الدافع الصلب: يحرق مادة صلبة تسمى الحبوب. يصمم المهندسون أغلب الحبوب بلب أجوف. ويحترق الدافع من اللب إلى الخارج. ويحجب الدافع غير المشتعل غلاف المحرك من حرارة الاحتراق. صواريخ الوقود الدافع الصلب. تحرق مادة بلاستيكية أو مطاطية تسمى الحبوب. وتتكون الحبوب من الوقود والمؤكسد في الحالة الصلبة. على خلاف بعض أنواع الوقود السائل، فإن الوقود والمؤكسد للمادة الصلبة لا يشتعلان إذا تلامسا مع بعضهما. ويجب إشعال الوقود بإحدى طريقتين: يمكن إشعاله بحرق شحنة صغيرة من المسحوق الأسود وهو خليط من نترات البوتاسيوم، والفحم النباتي والكبريت. كذلك يمكن إشعال الوقود الصلب بالتفاعل الكيميائي لمركب كلور سائل يرش على الحبوب. تتراوح درجة الحرارة في غرفة الاحتراق للوقود الصلب للصاروخ بين 1,600° و 3,300°م. يستعمل المهندسون في أغلب هذه الصواريخ الفولاذ القوي جدًا أو التيتانيوم لبناء حوائط الغرفة حتى تقاوم الضغط الذي ينشأ عن درجات الحرارة العليا. كذلك يستعملون الألياف الزجاجية أو مواد بلاستيكية خاصة. يحترق الوقود الصلب أسرع من الوقود السائل، لكنه ينتج قوة دفع أقل من التي تنتج من احتراق نفس الكمية من وقود سائل في نفس الوقت. يظل الوقود الصلب فعالاً لفترات طويلة من التخزين ولا يمثل خطورة تذكر حتى عند الإشعال. ولا يحتاج الوقود الصلب إلى أجهزة للضخ والمزج اللازمة للوقود السائل، لكنه من ناحية أخرى، صعب إيقافه وإعادة إشعاله. والمفترض أن تتوفر لرواد الفضاء القدرة على إيقاف وبدء عملية احتراق الوقود حتى يمكنهم التحكم في طيران سفنهم الفضائية. وهناك طريقة واحدة تستعمل لوقف الاحتراق وهي نسف مقطع الفوهة من الصاروخ. لكن هذه الطريقة تمنع إعادة الإشعال. تُستعمل صواريخ الوقود الصلب أساسًا في استخدامات الجيوش. ويجب أن تكون الصواريخ الحربية مستعدة للانطلاق في أي لحظة، ويمكن تخزين الوقود الصلب أفضل من أي وقود دافع آخر. وتوفر صواريخ الوقود الصلب الطاقة للصواريخ العابرة للقارات، بما في ذلك صاروخ مينوتيمان-2، وإم إكس، وكذلك للقذائف الصغيرة مثل هوك، وتالوس، وتِريرْ. وتُسْتَعْمَل صواريخ الوقود الصلب أداة إضافية لحمل الصواريخ مثل: صواريخ جاتو، وتستعمل كذلك بمثابة صواريخ صوتية. كما تستعمل صواريخ الوقود الصلب في عروض الألعاب النارية. 2_ صواريخ الوقود الدافع السائل :
صاروخ الوقود الدافع السائل يحمل الوقود والمؤكسد كلا في خزان منفصل. يدور الوقود خلال غلاف تبريد المحرك قبل دخوله غرفة الاحتراق. هذه الدورة ترفع درجة حرارة الوقود للاحتراق وتساعد على تبريد الصاروخ. صواريخ الوقود الدافع السائل. تحرق خليطًا من الوقود والمؤكْسِد في شكل سائل. وتحمل هذه الصواريخ الوقود والمؤكْسِد في صهريج منفصل. وتغذي شبكة من الأنابيب والصمامات عنصري الوقود داخل غرفة الاحتراق. وينبغي أن يمر الوقود أو المؤكسد حول الغرفة قبل المزج مع العناصر الأخرى. هذا من شأنه أن يبرِّد غرفة الاحتراق ويسخِّن مسبقًا عناصر الوقود للاشتعال.
تتضمن طرق تغذية الوقود والمؤكْسد إلى غرفة الاحتراق استعمال إما مضخات أو غاز ذي ضغط عال. وأكثر الطرق المألوفة هي استعمال المضخات. ويشغل الغاز المنتج باحتراق جزء صغير من الوقود المضخة التي تدفع الوقود والمؤكسد إلى غرفة الاحتراق. أما الطريقة الأخرى، فيدفع الغاز عالي الضغط الوقود والمؤكْسد إلى غرفة الاحتراق. ويمكن الحصول على مصدر الغاز ذي الضغط العالي من النيتروجين، أو بعض الغازات الأخرى المخزونة تحت الضغط العالي، أو من حرق كمية صغيرة من الوقود.
بعض أنواع الوقود السائل التي تسمى ذاتية الاشتعال تشتعل عندما يتلامس الوقود والمؤكسد. لكن معظم أنواع الوقود السائل تحتاج إلى جهاز إشعال. يمكن أن يشتعل الوقود السائل عن طريق شرارة كهربائية، أو حرق كمية صغيرة من مادة متفجرة صلبة داخل غرفة الاحتراق. يستمر الوقود السائل في الاحتراق ما دام سريان خليط الوقود والمؤكسد مستمرًا في الوصول إلى غرفة الاحتراق.
تُبنى أغلب خزانات الوقود السائل من الفولاذ أو الألومنيوم الرقيق عالي الصلابة. وأغلب غرف الاحتراق في هذه الصواريخ مصنوعة من الفولاذ أو النيكل.
يُنْتج الوقود السائل عادة قوة دفع أكبر من التي تنتج من احتراق نفس الكمية من الوقود الصلب في نفس الفترة الزمنية. كذلك فهو أسهل في بدء وإيقاف الاحتراق من الوقود الصلب. ويمكن التحكم في الاحتراق فقط بفتح أو غلق الصمامات.لكن يصعب التعامل مع الوقود السائل. فإذا خلطت عناصر الوقود دون إشعال، فإن الخليط سوف ينفجر بسهولة. كذلك يحتاج الوقود السائل إلى صواريخ أكثر تعقيدًا عما في حالة الوقود الصلب.
يستعمل العلماء صواريخ الوقود السائل لأغلب السفن التي تطلق إلى الفضاء؛ فعلى سبيل المثال، وفرت صواريخ الوقود السائل الطاقة للمراحل الثلاث في إطلاق مركبة ساتورن - ف.
3_صاروخ أيوني
وهو نوع من الصواريخ الكهربائية. تحول ملفات التسخين الوقود مثل السيزيوم إلى بخار. تغير شبكة تأيين متسامتة من البلاتين الساخن أو التنجستن البخار إلى سيل من الجسيمات المشحونة كهربائيًا تسمى الأيونات. الصواريخ الكهربائية. تستعمل الطاقة الكهربائية لإنتاج قوة الدفع. وهذه الصواريخ تحتوي على 1- صواريخ القوس الكهربائي النفاث 2- صواريخ البلازما النفاثة 3- الصواريخ الأيونية. ويمكن أن تعمل الصواريخ الكهربائية لفترة أكثر بكثير من أي نوع آخر، لكنها تنتج قوة دفع أقل. لا يقدر الصاروخ الكهربائي على رفع سفينة فضاء خارج المجال الجوي للأرض، لكنه يستطيع أن يدفع مركبة خلال الفضاء. ويعمل العلماء على تطوير الصواريخ الكهربائية لرحلات فضاء طويلة في المستقبل. صواريخ القوس الكهربائي النفاثة تُسخِّن وقودًا غازيًا بشرارة كهربائية تسمى القوس الكهربائي. وهذه الشرارة يمكن أن تسخِّن الغاز إلى ثلاثة أو أربعة أضعاف درجة الحرارة المنتجة بصواريخ الوقود السائل أو الصلب. صواريخ البلازما النفاثة نوع من صواريخ القوس الكهربائي النفاثة. يُوَلَّد سريان الغاز المتفجر بوساطة قوس كهربائي يحتوي على جسيمات كهربائية مشحونة. ويُسمى خليط الغاز وهذه الجسيمات بلازما. وتستعمل صواريخ البلازما النفاثة تيارًا كهربائيًا ومجالاً كهربائيًا لزيادة سرعة سريان البلازما من الصاروخ. الصواريخ الأيونية تنتج قوة دفع بوساطة سريان جسيمات مشحونة كهربائية تسمى الأيونات. يُسمى جزء من الصاروخ الشبكة الأيونية التي تنتج الأيونات كأنها غاز خاص يسير فوق سطح الشبكة. تزداد سرعة سريان الأيونات من الصاروخ بوساطة مجال كهربائيِّ.
4_الصاروخ النووي
صاروخ نووي يستعمل الحرارة من مفاعل نووي لتحويل الوقود السائل إلى غاز. يمر معظم الوقود خلال المفاعل. ويسخن بعض الوقود بوساطة فوهة الصاروخ ويمر خلال التوربين الذي يدير مضخة الوقود. الصواريخ النووية. تُسخِّن الوقود بوساطة مفاعل نووي، وهو آلة تنتج الطاقة عن طريق انشطار الذرات. يصبح الوقود المراد تسخينه بسرعة غازًا متمددًا ساخنًا. وهذه الصواريخ تنتج طاقة تعادل ضعفي أو ثلاثة أضعاف ما تنتجه صواريخ الوقود الدّفعي الصلب أو السائل. ويعمل العلماء على تطوير الصواريخ النووية لرحلات الفضاء.
يُضَخ في الصواريخ النووية هيدروجين سائل إلى المفاعل خلال الجدار المحيط بمحرك الصاروخ. وتساعد عملية الضخ هذه على تبريد الصاروخ، وكذلك على تسخين الهيدروجين السائل. ويمر خلال المفاعل مئات من القنوات الضيقة. وعندما يمر الهيدروجين السائل خلال هذه القنوات، تقوم حرارة من المفاعل بتحويل الوقود إلى غاز متمدد في الحال. ويمر الغاز خلال فوهة العادم بسرعات قد تصل إلى 35،400كم/ساعة.
توجيه الصاروخ المجنح
كان لابد من افراد جزءاً خاص للصاروخ المجنح وذلك للاهمية التي يمثلها هذا الصاروخ هذه الايام ولنجعل الموضوع عن الصواريخ اكثر تكاملاً
يتميز الصاروخ المجنح عن غيره بوجود الاجنحة على جانبيه كما يتضح من الاسم ووظيفة هذه الاجنحة هي التوجيه كما في الطائرات والغواصات ويمكن تغيير مساره بعد اطلاقه بخلاف الصواريخ العادية وتشكل هذه الصواريخ الاجزء الاهم في اكبر ترسانات الصواريخ العالمية ويمكن اطلاقه عبر مختلف الوسائل الجوية البرية والبحرية .
موضوع: رد: موسوعة كيف يعمل (((متجدد))) الأحد 16 ديسمبر 2012 - 13:27
كيف تعمل المروحية
تعريف المروحية
الطوافة هي طائرة قادرة على الطيران في اي اتجاه وتحوم في الهواء دون حصول اي خلل فيها او فقدان لتوازنها ، فبدل الاجنحة الثابتة تمتلك جانحا متحركا يسمى المروحة تقوم مقام الجناح والفراش الطائرات التقليدية ، ان اهم قطعة عاملة في الطوافة هي : راس المروحة : وهو مؤلف من مجموعة متشابكة من قضبان معدنية ومفاصل وصفائح تربط المحركات وغرفة قيادة الطيار مع ارياش المروحة . تدير المحركات راس المروحة بسرعة فائقة مسبببة بذالك دوران الارياش الموصولة بالراس حيث تعمل مثل اجنحة طويلة ورفيعة وهذا يولد قوة تسمى << قوة الرفع >> تجعل الطوافة ترتفع في الهواء ، كذالك يوجد على الطوافة مروحة اخرى اصغر من الولى مركبة على الذيل تقوم بمنع الطوافة من الدوران السريع . باستطاعة الطيار ان يوجه الطوافة الى جهات مختلفة بالضغط على عصا القيادة في حجة الطيار عصا القيادة هذه تعدل الميلان بزواية راس المروحة او بالارياش . تقع حجرة الطيار قبالة المحركات وتحتوي على نوافذ كبيرة تسمح للطيار ان يشاهد بكل وضوح كل ما هو امامه وحواليه ، وذراع الدفع او العمود يمتد على طول جسم او هيكل الطوافة وصولا الى قسم الذيل . ان الطوافات بشكل عام مركبات مفيدة من عدة نواحي فهي تقلع وتهبط في اماكن صغيرة و ضيقة لا تجاريها في ذالك الطائرات التقليدية بها المضمار ، كما تتميز بقابليتها العالية على شحن مختلف انواع البضائع من مختلف الاحجام والانواع كسلع و الاسلحة والافراد والاليات بل ان بعض المروحيات لها القدرة عى شحن مروحية اخرى بكاملها
أجزاء الهيليوكبتر
تتكون الهيليكبتر من عدة أجزاء وهي موضحة في الشكل التخطيطي
التالي:
أجزاء
طائرة الهيليكوبتر
سوف نركز على أهم الاجزاء فيها بالشرح والتفصيل.
(1) المروحة الرئيسية
تزود الطائرة المروحية بمروحة رئيسية تتكون من ثلاث او اربع شفرات تعمل على رفعها عن الارض بخلاف الطائرة العادي التي تعمل محركاتها لدفعها اللى الامام وتندفع المروحية الى الامام عن طريق امالة الشفرات كما في الصورة
وباساتخدام هذه الخاصية الفيزيائية تتمكن المروحية من الاقلاع وهي في مكانها دون الحاجة الى مدرج طويل .
شكل تخطيطي يوضح المروحة الرئيسية ومروحة الذيل (2) المروحة المضادة للازدواج وهي المروحة التي تعمل على رد فعل المروحةالرئيسيةوتمنع دوران المروحيةبفعل شفراتهاوتكون امافي ذي الطائرةفتدور عس اتجاه دوران المروحةالرئيسيةاوتكون موازيةللمروحة الرئيسيةوتدور عكس المروحةالاولى مما يمكن الطائرة من الاقلاع والهبوط
الحركة الانتقالية لكي تتحرك الهيليكوبتر إلى الأمام فإنهاتتحول نوعاما إلى
طائرةعادية، أي
أنهاتحدث ميلا إلى الأمام في المستوى الذي تدور فيه المروحة.وعندئذ، فإن
المروحةالرئيسيةتولد قوة شدإلى الإمام،
مع استمرارهافي المساعدةعلى توازن الهيليكوبتر.وواضح أنه إذامال مستوى الدوران إلى الخلف أو إلى أحد
الجانبين فإن الهيليكوبترتتحرك إلى الخلف أو إلى أحدالجانبين
.كماأنه يمكن تحريك الهيليكوبترإلى الأمام، بتغييرمعدلحركةشفرات
المروحةالرئيسيةويتم هذا التغييرعن طريق رافعةتسمى" جهاز التحكم في
الحركةالدوارة". الهبوط:
ما الذي يجب على قائدالهيليكوبترأن يفعله ليهبط بهابعد أن
تصل فوق
هدفها؟ إن
الأمربسيط. كل ماعليه أن يفعله، هو تقليل قوةالحمل في
المروحةالرئيسية.ولكي يفعل ذلك، فإنه يعمل على تغيير معدل حركةشفرات المروحة.ومن
الناحيةالعملية،فإنه يعدل بذلك زاويةاصطدام الشفرات بالهواء.وبهذه
الطريقةتقل قوةالحمل،وإذا صارت هذهالأخيرةأقل من وزن الهيليكوبتر،هبطت
هذه من تلقاء نفسها.فإن الهيليكوبترتصعدإذازادت قوة الحمل على
قوةالحمل مع وزنها.وتعودفنكررأن قوة الحمل تتوقف على معدل حركةشفرات
المروحة الرئيسية.
التحليق يمكن ان يقوم الطيار بتثبيت الهيليوكبتر في الجو وذلك بالتحكم
في سرعة دوران المروحة الرئيسية للوصول الى السرعة المطلوبة للحفاظ على توازنها
في الجو وهذا يتطلب مهارة كبيرة من القائد
اجهزة التحكم والسيطرة :
ليس من السهل قيادة الطوافة ، فالطيار يستعمل يديه وقدميه وعينيه لتشغيل كل الاجهزة الخاصة بالطيران .انه دوما يقوم بتعديلات طفيفة على الاجهزة كي يحافظ على توازن الطوافة وادائها الصحيح وفوق كل هذا عليه ان يشغل اجهزة الملاحة والاتصالات فاذا كانت حربية عليه يجب عليه حينها بتشغيل انظمة التسليح و التهديف على متنها لذالك تجهز معظم المروحيات القتالية بطيار وضابط للاسلحة تتلخص مهمته في تولي انظمة ادارة النيران والتصويب في الطوافة من اجل تخفيف الضغط على الطيار ومنحه القدرة على اداء افضل في القيادة و المناورة بالطوافة . تظهر نتائج عمل اي جهاز من الاجهزة على لوحة تحتوي كل الادوات الازمة لتشغيل هذه مركزة تماما امام الطيار فمهمة الطيار دوما مراقبة لوحة الاجهزة كما مراقبة ما يدور حواليه في الخارج ، فيتم تركيب اجهزة التشغيل على جانبي لوحة الادوات اذا كان طاقم الطوافة مؤلفا من شخصين فيخول هذا سير العمليات القائمة بالنتظام كذالك قضبان التحكم والدواسات مركبة على جانبي حجرة الطيار لاجل هدف واحد وهو تولي مساعد الطيار القيادة في الحالات الطارئة .
الصورتان اعلاه : تقع عصا القيادة الدورية cyclic stick مقابل الطيار فهي تتحكم بوجهة طيران الطوافة برفع وتنزيل ذراع التحكم الجماعي بالترجح collective lever module الموجود على جانب الايسر للطيار يحصل تعديل بمقدار الرفع الذي تولده المروحة الرئيسية وببرم ايضا قبضة اليد على ذراع التحكم الجماعي يسيطر الطيار على سرعة المحرك ويستطيع ايضا استعمال دواستي القدم tail rotor pedals لتغيير الدفع الصادر عن مروحة الذيل مسيرا الطافة نحو جهات مختلفة....
1-تقوم عصا القيادة الدورية cyclic stick بتسير الطوافة الى الوراء الى الامام او الى الجانب الايسر و الايمن 2-اثناء التحويم تدير الطوافة دواستا التحكم اما الى الشمال او اليمين 3-ذراع السيطرة الجماعية على الترجح collective lever module يرفع او يخفض من علو الطوافة المصادر https://army.alafdal.net/t10905-topic
موضوع: رد: موسوعة كيف يعمل (((متجدد))) الأحد 16 ديسمبر 2012 - 17:54
تكملة رائعة اخي العزيز لموضوع موفق من بدايتة بدي اسئلك هو الردار بيقع فين في المروحية... واذا كان ردار المروحية يكشف كمثال الدبابات ويستطيع توجية الصاروخ اليها وهي تتحرك مثل هليفاير فما هي فكرة اكتشافة لها وكم متوسط مدي ردار المروحيات... وايضا هل من الممكن ان تتقاتل مروحيتان ؟ تحياتي لك وتقيم علي الموضوع الرائع
موضوع: رد: موسوعة كيف يعمل (((متجدد))) الأحد 16 ديسمبر 2012 - 17:56
الرادار
تعريف الرادار : يعتبر الرادار من الاجهزة الشائعة الاستخدام في مختلف مجالات حياتنا بالرغم من كوننا لا نستطيع نشعر بوجوده او نرى اشاراته. فالرادار يستخدم في المطارات لتعقب حركة الطائرات وتوجيهها خلال رحلاتها الجوية واثناء الاقلاع والهبوط. كما يستخدم الرادار لضبط السائقين الذين يتجاوزون السرعة القانونية المسموح السير بها. كما يستخدم الرادار في الملاحة البحرية لتوجيه السفن والغواصات، كما يستخدم الراردار في وكلات الفضاء لرسم خرائط الكواكب ومراقبة مسارات الاقمار الصناعية، كما يلعب الرادار دوراً هاماً في معرفة الاحوال الجوية واكتشاف العواصف والاعاصير هذا بالاضافة الى استخدامه في المعارك الحربية وتوجيه القذائف والصواريخ. لذا فإن الرادار من الاجهزة التقنية التي لا يمكن الاستغناء عنها.
فكرة عمل الرادار يرسل الرادار موجات كهربائيه نحو جانب من الفضاء، لا يمكن رؤية موجات الراديو، فهي تنتقل بسرعة الضوء، اي بسرعة ثلاثمئة الف كيلومتر في الثانيه.
تنعكس الموجة المرسله حين تسطدم بأي هدف يعترضها، كأن تسطدم بطائره. بما ان سرعة الموجة معروفه، يصبح بالامكان معرفة المسافة التي تفصل بين الرادار والهدف بقياس الوقت الذي يفصل بين الاشارة ورجع الصدى.
خطوات عملية الكشف
مسح أولي: يقوم الهوائي الرئيسي بإنتاج حزمة المسح، مثال:المسح الدائري والمسح النطاقي.
مسح متقاطع أو نخيلي: تنتج حزمة المسح من تحريك الهوائي مع عناصر تغذيته، وهذا المسح عبارة عن دمج المسحين الأولي والثانوي.
الية عملية الكشف: يتولى جهاز الارسال بث ومضات قصيره، طول كل منها اقل من جزء على المليون من الثانيه. تشكل هذه الموجات ما يعرف بقطار موجات الراديو. يتم ارسال قطار الموجات بأتجاه الهوائي عبر انبوب معدني يسمونه دليل الموجات.
حين تنبعث من دليل الموجات، توجه الموجات الى عاكس الهوائي، الذي يتشكل عادة من شبكة معدنيه. يقوم العاكس بدفع وتحديد الموجات ضمن اشعاعات متعددة الاتساع.
شكل وحجم الهوائي يحدد دقة الاشعاعات كما ومستوى بلوغها.
فكلما كبر الهوائي كلما طالت وضاقت اشعتها وامكن تحديدها بشكل ادق. الهوائي المستطيل الشكل، الذي يزيد عرضه عن ارتفاعه، ترسل اشعاعات ضيقة ولكنها مسهبة في الارتفاع.
عادة ما تستهدف الهوائيات المتعرجه، او التي تجول حول محورها، تصوير الفضاء في جميع الاتجاهات. فعلى سبيل المثال بعض الرادارات المستخدمة للتحكم بالمواصلات الجويه، تدور بوتيرة ستة مرات في الدقيقه، وتحدد موقع الطائرة مرة كل عشر ثوان.
بعد ارسال الاشعاعات نحو الفضاء، يتنبه الرادار، لصدى موجاته. يفعل ذلك لمدة تقل عن جزء من الالف في الثانيه. ما يكفي من الوقت للاشعاع، كي يصل الى الهدف، ويعود الى الهوائي قبل ان يتم ارسال ومضة اشعاع اخرى.
يتم التقاط الصدى من خلال الهوائي ذاته الذي يستخدم لارسال الاشارة الاوليه. اذ يقوم بدور المفتاح العاكس جهاز يسمونه خلية الارسال والاستقبال TR cell.
يقوم هذا الجهاز بأقفال اللاقط مؤقتا خلال الفترة القصيرة لمرحلة الارسال، في حين يعاود تنشيطه في حال استقبال اي صدى لموجاته.
للحؤول دون مزج الاصداء وموجات الراديو القادمة من رادارات اخرى، لدى اللاقط حساسية محدده تجاه الموجات التي يقوم الرادار نفسه بأرسالها.
في المرحلة الاولى يكشف اللاقط ويكبر الأشارة التي يستقبلها، لانها صغيرة جدا، فهي اصغر بآلاف بلايين المرات من الاشارة الاساسيه.
في المرحلة الثانيه، يحدد اللاقط نوع الصدى الذي يستقبله. اذا كانت وظيفة الرادار الكشف عن الطائرات، سيلغي اللاقط اي صدى لاهداف محيطة اخرى كالاشجار والابنيه.
وهو يفعل ذلك باللجوء الى ظاهرة فيزيائية تعرف بظاهرة دوبلر.
نلاحظ هذه الظاهرة حين نسمع صفير قطار متحرك مثلا. حين يتحرك القطار بأتجاهنا يرتفع صوت الصفارة عاليا، لينخفض صوتها بالمقابل، ان كان القطار يرحل. وهذا ما يحدث في اشعاعات الراديو.
اذا كان الهدف الذي يكشفه طائرة قادمه، عادة ما يكون صدى الموجات مضغوطا، فتزداد وتيرتها. اما اذا كانت الطائرة تبتعد عن الرادار، فيتمدد صدى موجاتها، وتقل وتيرتها.
وبالمقابل حين يكشف الرادار عن هدف ثابت، كتلة جبل مثلا، تبقى وتيرة الصدى كما كانت لحظة انطلاقها.
هكذا يتمكن اللاقط من تمييز صدى متحرك يرده هدف متحرك، او هدف ثابت غير مرغوب فيه. ظاهرة دوبلر تساعد اللاقط ايضا، على تحديد سرعة الهدف، بقياس الفارق بين وتيرة الموجات التي يرسلها الرادار، والموجات التي يعكسها الهدف
أقسام مجموعة الرَّادار يتباين حجم مجموعة الرَّادار حسب استخدامها؛ فمجموعة الرَّادار التي تستخدمها الشرطة للكشف عن السيارات القريبة المُسرعة، يمكن حملها باليد، وتزن حوالي 18كجم. أمَّا وحدات الرَّادار الضخم المستخدم لدراسة الكواكب والأهداف الأخرى البعيدة، فتشمل أبنية كبيرة. ولبعض هذه الوحدات هوائيات يصل قُطْرها إلى 300م.
وعلى الرغم من اختلاف المجموعات الرَّادارية في الحجم فهي متشابهة في أقسامها، وهذه الأقسام هي: 1- المذُبذب، 2- المضمِّن، 3- المرسِل، 4- مفتاح الإرسال والاستقبال، 5- الهوائيّ، 6- المستقبِل، 7- معالج الإشارة، 8- العارض، 9- الموقت.
المذبذب. جهاز يُنتِج إشارة كهربائية ذات قدرة منخفضة بتردد ثابت. يحدد ترددُ المذبذب ترددَ عمل مجموعة الرَّادار. المُضمن. في الرَّادار النَّبضي، مفتاح إلكترونيّ، يُوصِّل المرسل ويفصله بسرعة. وبذلك ينتج المُرسِل رشقاتٍ مَوْجيَّة قصيرة. وفي رادار تضمين التردد يغيّر المضمن الموجة المُرسلة باستمرار. وليس لرادار دوبلر مضمن. المُرسل. يعْمَل بوصفه مُكبِّرًا، إذ يأخذ الإشارة الكهربائية ذات القدرة المنخفضة، وينتج إشارة عالية القُدرة. فعلى سبيل المثال، ينتج مرسل الرَّادار النَّبضي، المستخَدم في التحكُّم في الملاحة الجوية، إشارة بقدرة قصوى تصل إلى عدة ملايين واط.
مفتاح الإرسال والاستقبال. يُمكِّن استخدام هوائيّ واحد لكلٍّ من الإرسال والاستقبال. ويقود مفتاح الإرسال والاستقبال إشارات المُرسِل إلى الهوائي، ويمنع هذه الإشارات من التدفُّق إلى المستقبِل. والإشارات القويّة من المُرسِل قد تُتْلفُ المستقبِل الحسَّاس إذا دخلت فيه. وبعد إرسال الهوائي للموجة يوصل مفتاح الإرسال والاستقبال، المستقبِل إلى الهوائيّ. ويمكن هذا التوصيل المستقبِل من التقاط الأصداء القادمة. الهوائي. يُرسِل الإشارات الرَّادارية على شكل حزْمة ضيِّقة من الموجات الكهرومغناطيسية، كما يجمع الأصداء المُنعكسة. وحيث إن معظم وحدات الرَّادار الحديثة لها مفتاح إرسال واستقبال، فإنّها تستخدم الهوائيّ نفسه للإرسال والاستقبال. ويتكون النوع الشائع من الهوائيات من بوق مربوط في مقدمة صحن عاكس كبير يُسمَّى عاكسًا. ويطلق البوق الموجات الرَّادارية، فيركِّزها العاكس في حزْمة ضَيِّقة. ويدور هوائي الرَّادار، بحيث تنتشر هذه الحزمة حول محطة الرَّادار ماسحة الأهداف في جميع الاتجاهات. وتُستخدَم في مجموعات الرَّادار أنواع أخرى من الهوائيات تعمل عند تردُّدات منخفضة نسبيًّا أو عند ترددات عالية للغاية. ويستخدم الرَّادار الذي يَبُثُّ موجات راديويَّة منخفضة التردد هوائيات مصنوعة من أنابيب معدنية، أو قضبانًا تشبه الهوائيات الخارجية للتلفاز. وتستخدم في الرَّادارات الضَّوئيَّة، نبيطة مختلفة اختلافًا بيّنًا ترسل الموجات ذات التردُّد العالي كالضوء فوق البنفسجي أو الضوء المرئي أو الأشعة تحت الحمراء. وتشبه هذه الوسائل التلسكوب (المقراب) ولها عدسات زجاجية تُرَكِّز الموجات الخارجة في حزمة.
المُستقبل. يأخذ الأصداء الضعيفة المتجمعة بوساطة الهوائيّ ويضخِّمها كثيرًا. والمُستقبِل حسَّاس لدرجة أنه يستطيع بسهولة كشف الأصداء ذات القدرة التي تقلّ عن واحد من المليون من الواط. ويرشِّح المستقبل أيضًا الضَّجيج والتَّداخلات الأخرى الملتقَطة من الهوائيّ.
معالج الإشارة. تَمُرُّ الإشارة الواردة من المستقبل، في معظم وحدات الرَّادار، خلال معالج للإشارة قبل ذهابها إلى الشاشة. ويؤدي معالج الإشارة وظائف مختلفة في الرَّادارات المستخدمة لأغراض مختلفة، فهو يَحْجُبُ في بعض أنواع الرَّادارات الأصداء من أهداف كبيرة وثابتة، ويسمح فقط للأصداء من الأهداف الصغيرة المتحرِّكة لتصل إلى الشاشة. وبذلك يُمكِّن مُعَالج الإشارة عاملَ الرَّادار، من رؤية طائرة على سبيل المثال، على الرغم من أنَّ أصداء الطائرة تصل في وقت واحد مع أصداء أقوى بكثير صادرة من جبل. ويقوم الحاسُوب في كثير من أجهزة الرَّادار الحديثة مقام مُعالِج الإشارة. العارض (الشاشة). يُقدِّم للعاملين في الرَّادار المعلومات المُحصَّلة عن هدفٍ ما. ولبعض مجموعات الرَّادار عارض بسيط. فرادارات دوبلر المحمولة التي تستخدمها الشرطة على سبيل المثال لها مقياس يشير إلى سُرعة عَرَبةٍ أو شاحنة، إلا أن معظم مجموعات الرَّادار ذات عارض أعقد، مؤلّف من أنبوبة أشعة مِهْبَطية، وهي صمام مُفرَّغ مُزَوَّد بعارض فلوريّ يشبه جهاز التلفاز. انظر: الصمام المفرغ. ويستطيع عارض أنبوبة الأشعة المِهْبَطية عَرْض المُعطيات الرَّادارية بأشكال عدَّة. والعارض الأكثر انتشارًا هو عارض مؤشِّر المَوْضِع السَّطْحيّ، ويزودنا بصُورةٍ تُماثل الخارطة للمنطقة الممسوحة بحزمة الرَّادار. ويوافق مركز الصورة موضع مجموعة الرَّادار. ومحيط العارض مدرج مثل البوصلة وذلك لقراءة الاتجاه. ويمكن أن تكون للعارض دوائر تنتشر من مركز الصُّورة إلى محيطها لتبيِّن المسافة بالميل أو الكيلومتر. وتَظْهَر الأصداء الرَّادارية في شكل نقاط مضيئة. ويعطي موضع النقطة بالنسبة لتدريج البوصلة اتجاه الهدف. وتبين مسافة النقطة من مركز الشاشة مقدار بُعْد الهَدَف. ويمكن تحديد سرعة الهدف بملاحظة الوقت الذي تستغرقه النقطة لتقطع مسافة معيَّنة على عارض الرَّادار. وتبيِّن أشكال أخرى من العوارض ارتفاع الهدف، ويستخدم هذا النوع من العوارض في مجموعات الرَّادار المصمَّمة للمساعَدة في توجيه الطائرة في أثناء الهبوط.
المُوقِّت. يؤَمِّن تشغيل مجموعة الرَّادار بكفاءة وسهولة. وتُوصِّل هذه النبيطة أجزاءً رئيسية لمجموعة الرَّادار بدقة وتفصلها في الوقت المناسب أوتوماتيًا، ويقوم الموقت بعمله هذا بإرسال إشارات تَحَكُّم إلى أقسام النِّظام المختلفة بتسلسل مناسِب.
انواع الرادار 1_ الرادار النبضي : يَبُثّ إشارات على شكل رشقات قويَّة متقطِّعة، أو نبضات، وتستمر هذه النَّبضات للموجات الرَّادارية بضعة أجزاء من المليون من الثانية. ولمجموعة الرَّادار النبضي هوائي واحد يستخدم بالتناوب لإرسال النبضات ولاستقبال أصدائها. ويمكن إيجاد المسافة إلى أحد الأهداف بقياس الزَّمن الذي تستغرقه الموجة الرَّادارية لتصل إلى هذا الهدف وتعود. وتسير الموجات الرَّادارية كبقية الموجات الكهرومغنطيسية بسرعة الضوء 299,792كم/ث. لذا فالموجة الرَّادارية التي تعود بعد ثانيتين تكون قد قَطَعت 599,584كم، أي 299,792كم في الذهاب إلى الهدف والمسافة نفسها في الإياب، وتحول مجموعة الرَّادار النبضي آليًا الزمن اللازم للذهاب والإياب إلى مسافة (بُعْد) نحو الهدف. ويَبُثُّ الهوائيُّ النبضات المَوْجيَّة في حزْمة ضيقة عالية التَّوجيه تُمكِّن مجموعة الرَّادار من تحديد اتجاه الهدف. ولا يستطيع عكس الموجات إلا الهدف الذي يقع في حجم الحزمة فقط. ويحدد الاتجاه الذي منه تنعكس الموجات موضِع الهدف. ويستطيع الرادار النبضي ملاحقة (تتبع) هدف، بإرسال متواصل لإشارات نبضية، وقياس مسافة الهدف واتجاهه في فترات منتظمة. ويستخدم هذا النوع من الرَّادار أيضًا لرسم خرائط رادارية من طائرة. ويمكن إنتاج الخريطة الرادارية بمسح حزمة نبضات فوق مساحة محددة، ورسم شدة الأصداء من كل اتجاه. وتظهر الأصداء في شكل صورة على شاشة الرادار، وتسجل على فيلم ضوئي. وتنتج الأهدافُُ، مثل الأبنية والجسور والجبال، صورًا لامعة، لأنها تعكس أصداء قويّة. 2_ الرَّادار ذو المَوْجة المستمرة. يبث إشارة متواصلة عوضًا عن الرشقات القصيرة، ويوجد نوعان من الرَّادار ذي الموجة المستمرَّة، هما:
رادار دوبلر :يستخدم بصورة رئيسيَّة للقياسات الدقيقة للسُّرعة، ويعمل على مبدأ تأثير دُوبلر، وهو تغيير على تردد الموجة تسببه الحركة. يرسل رادار دُوبلر موجة مستمرَّة بتردُّد ثابت، ويستخدم الهوائي نفسه في كلٍّ من الإرسال والاستقبال. وعندما تصطدم الموجة المُرْسَلة بهدف مُقترِب من الرَّادار، تنعكس الموجات عند تردد أعلى من التردد المرسل. وعندما يكون الهدف مبتعدًا عن مجموعة الرَّادار، فإن الموجة المرتَدَّة تصبح ذات تردُّدٍ أقلَّ، وكلّما كان الهدف أسرع في أيٍّ من الاتجاهين كان الفرق أكبر بين تردد الموجة المرسَلة وتردد الموجة المُنعكِسة. وبقياس الفَرقْ في التردُّد يحدد رادار دُوبلر سرعة الهدف المُراقَب. وتستخدم الشرطة رادار دُوبلر لكشف السائقين المُسرعِين. ويستخدمه الجنود لقياس سرعة الأهداف بغية توجيه نيران الأسلحة.
2ـ رادار تضمين التردد. يبث أيضًا إشارة مستمرَّة، إلاَّ أنه يزيد أو ينقص تردُّد الإشارة في فترات منتظمة. ونتيجة لذلك فإنّ رادار تضمين التردّد، خلافًا لرادار دوبلر، يُمْكِنُه تحديد المسافات لهدف ثابت أو متحرك. وفي الزمن الذي تصل فيه إشارة الرَّادار إلى الهدف وتعود، يكون تردُّد الهدف المرسل قد تغير. ويقاس الفرق بين تردّد الصدى وتردُّد المُرسل، ويحوّل إلى مسافة للهدف الذي ينتج الصدى. وكلّما كان الهدف أبعد ازداد الفرق بين الترددين. ويمكن استخدام رادار تضمين التردّد، مثل الرَّادار النَّبْضيّ، في رسم الخرائط، وفي الملاحقة. ويمكن استخدامه على الطائرات مقياسًا للارتفاع.
تطبيقات النظم الرادارية آ - رادارات التفتيش search radar: يُمسح في رادارات التفتيش الفضاء المحيط بهوائي الرادار ذي حزمة الإشعاع المروحية من خلال تحريكه بشكل نوسي أو دوراني، إذ يتكامل نظامان راداريان أحدهما للتفتيش بالاتجاه والآخر في الارتفاع لإعطاء صورة فراغية لتوضُّع الأهداف. من هذه الرادارات: ـ رادار الأحوال الجوية weather radar: يستخدم في الطائرات لإعطاء وضع الطقس أمام مسار الطائرة منها وجود الغيوم وكثافتها وسرعة حركتها ومسافتها. كما يمكن استخدامه من متن السواتل[ر] لمسح وضع الطقس على سطح الكرة الأرضية لتحديد مجرى الرياح أو مواقع الضغط المنخفض والعالي وغير ذلك من المعطيات المفيدة. ـ رادار المراقبة البحرية sea surveillance radar: يستخدم هذا الرادار لكشف المسار أمام البواخر، وذلك لتفادي الاصطدام فيما بين البواخر أو بين البواخر ورصيف الميناء. وتكون مقدرة التمييز لهذه الرادارات عالية وتعمل عادة لمسافات لا تتجاوز عشرات الكيلومترات. ب - رادارات الملاحقةtracking radar : يتم في هذه الرادارات متابعة مسار الهدف خلال حركته عن طريق استخدام نموذج إشعاع للهوائي قلمي مع استخدام نظريات خاصة للملاحقة تعتمد على حساب خطأ الانزياح الزاوي سواء في الاتجاه أو الارتفاع. من هذه الرادارات: ـ رادار توجيه الطائرات guidance radar: يستخدم سواء في المطارات أو على متن الطائرة، وذلك لتوجيه الطائرة خلال سيرها أو في مرحلة هبوطها. ـ رادار التحكم بالنيران fire control radar: يستخدم هذا الرادار لملاحقة الأهداف من أجل الرماية عليها بالصواريخ أو المدفعية، ويتبع هذا النظام عادة نظام معالجة خاص يتعامل مع المحدِّدات الخارجية كالحرارة وسرعة الريح ونوع القذيفة. ـ الرادار الفلكي astronomy radar: يستخدم هذا الرادار حزمة إشعاع للهوائي قلمية ضيقة جداً وذلك للتمكن من متابعة مسار الكواكب وتحديد حركتها وقياس البعد فيما بينها أو بعدها عن الأرض. ج - رادارات التصوير: هي رادارات ذات مقدرة تمييز resolution عالية تركب على متن الطائرات أو السواتل وتستخدم حزمة إشعاع مروحية تغطي خطاً من المساحة المطلوب تصويرها، كما تستخدم حركة الطائرة أو الساتل لتكوين تراكب لخطوط المسح، وبالتالي إعطاء الصورة الرادارية للمساحة المطلوب تصويرها. تراوح دقة التصوير بين عدة سنتيمترات وعدة أمتار، وتستخدم نظم معالجة إلكترونية ورقمية عالية المستوى للحصول على دقة التصوير المطلوبة.
المصادر http://www.arab-ency.com/index.php?module=pnEncyclopedia&func=display_term&id=5369&m=1
موضوع: رد: موسوعة كيف يعمل (((متجدد))) الأحد 16 ديسمبر 2012 - 18:17
General: Yahia كتب:
تكملة رائعة اخي العزيز لموضوع موفق من بدايتة بدي اسئلك هو الردار بيقع فين في المروحية... واذا كان ردار المروحية يكشف كمثال الدبابات ويستطيع توجية الصاروخ اليها وهي تتحرك مثل هليفاير فما هي فكرة اكتشافة لها وكم متوسط مدي ردار المروحيات... وايضا هل من الممكن ان تتقاتل مروحيتان ؟ تحياتي لك وتقيم علي الموضوع الرائع
مشكور على التفاعل ولو انتظرت دقياقتان عن طرح سؤالك لرأيت جوابه في الاضافة الاخيرة فهي كانت بعد سؤالك بدقيقتان الشق الاول : مكان رادار المروحية https://army.alafdal.net/t53134-topic
الشق الثاني من السؤال : جميع المروحيات بامكانها القتال حتى تلك المروحيات التي لاتحمل صواريخ الجوو_ جو لأنها بالتأكيد تكون حاملة للرشاش القتالي باختلاف نوعه وسرعة طلقاته
موضوع: رد: موسوعة كيف يعمل (((متجدد))) الأحد 16 ديسمبر 2012 - 19:19
اخي محب المؤمنين شكرا على المواضيع الجديدة بالنسبة لهذا الرابط https://army.alafdal.net/t53134-topic يتكلم عن رادار او جهاز اطلاق الذخيرة يعطي بعض الدقة لجهاز التسديد ولا توجد مشكلة اذا لم يكن موجود في المروحية وتقييم